WGAN
wgan之前, 原始GAN出现了什么问题?
https://www.cnblogs.com/Allen-rg/p/10305125.html
- 判别器越好,生成器梯度消失越严重
- 一句话概括:最小化第二种生成器loss函数,会等价于最小化一个不合理的距离衡量,导致两个问题,一是梯度不稳定,二是collapse mode即多样性不足。
WGAN
WGAN成功的做到了以下几点:、
- 彻底解决GAN训练不稳定的问题,不再需要小心平衡生成器和判别器的训练程度
- 基本解决了collapse mode的问题,确保了生成样本的多样性
- 训练过程中终于有一个像交叉熵、准确率这样的数值来指示训练的进程,这个数值越
小代表GAN训练得越好,代表生成器产生的图像质量越高(如题图所示)- 以上一切好处不需要精心设计的网络架构,最简单的多层全连接网络就可以做到
相比原算法,WGAN改变了以下几点:
- 判别器最后一层去掉sigmoid
- 生成器和判别器的loss不取log
- 每次更新判别器的参数之后把它们的绝对值截断到不超过一个固定常数c
- 不要用基于动量的优化算法(包括momentum和Adam),推荐RMSProp,SGD
训练技巧:D和G交替训练,训练多次D再训练一次G
WGAN的损失函数,使用EM距离:
- 生成器:\(min_G = -E_{z-p_z}[f_w(G(z))]\)
- 判别器:\(max_{D}=E_{x-p_x}[f_w(x)]-E_{z-p_g}[f_w(G(z))]\)
D和G的损失其实都在使用
WGAN的更多相关文章
- 不要怂,就是GAN (生成式对抗网络) (六):Wasserstein GAN(WGAN) TensorFlow 代码
先来梳理一下我们之前所写的代码,原始的生成对抗网络,所要优化的目标函数为: 此目标函数可以分为两部分来看: ①固定生成器 G,优化判别器 D, 则上式可以写成如下形式: 可以转化为最小化形式: 我们编 ...
- WGAN源码解读
WassersteinGAN源码 作者的代码包括两部分:models包下包含dcgan.py和mlp.py, 这两个py文件是两种不同的网络结构,在dcgan.py中判别器和生成器都含有卷积网络,而m ...
- W-GAN系 (Wasserstein GAN、 Improved WGAN)
学习总结于国立台湾大学 :李宏毅老师 WGAN前作:Towards Principled Methods for Training Generative Adversarial Networks W ...
- talk is cheap, show me the code——dcgan,wgan,wgan-gp的tensorflow实现
最近学习了生成对抗网络(GAN),基于几个经典GAN网络结构做了些小实验,包括dcgan,wgan,wgan-gp.坦率的说,wgan,wgan-gp论文的原理还是有点小复杂,我也没有完全看明白,因此 ...
- (转)看穿机器学习(W-GAN模型)的黑箱
本文转自:http://www.360doc.com/content/17/0212/11/35919193_628410589.shtml# 看穿机器学习(W-GAN模型)的黑箱 201 ...
- WGAN (原理解析)
在GAN的相关研究如火如荼甚至可以说是泛滥的今天,一篇新鲜出炉的arXiv论文<Wasserstein GAN>却在Reddit的Machine Learning频道火了,连Goodfel ...
- W-GAN
令人拍案叫绝的Wasserstein GAN WGAN前作分析了Ian Goodfellow提出的原始GAN两种形式各自的问题,第一种形式等价在最优判别器下等价于最小化生成分布与真实分布之间的JS散度 ...
- DCGAN、WGAN、WGAN-GP、LSGAN、BEGAN原理总结及对比
DCGAN.WGAN.WGAN-GP.LSGAN.BEGAN原理总结及对比 from:https://blog.csdn.net/qq_25737169/article/details/7885778 ...
- wgan pytorch,pyvision, py-faster-rcnn等的安装使用
因为最近在读gan的相关工作,wgan的工作不得不赞.于是直接去跑了一下wgan的代码. 原作者的wgan是在lsun上测试的,而且是基于pytorch和pyvision的,于是要装,但是由于我们一直 ...
- WGAN的改进点和实操
包含三部分:1.WGAN改进点 2.代码修改 3.训练心得 一.WGAN的改进部分: 判别器最后一层去掉sigmoid (相当于最后一层做了一个y = x的激活) 生成器和判别器的loss不 ...
随机推荐
- C#与C互操作
C#给C++传递char**(转载) extern "C" _declspec(dllexport)void GetResult(char* a,char** pBuf) { sp ...
- vmware虚拟机 CentOS出现连接被拒--ssh:connect to host localzly port 22: Connection refused
一.问题现象: 错误提示如下:CentOS出现连接被拒--ssh:connect to host localzly (自己的主机名)port 22: Connection refused 二.问题原因 ...
- vue-cli-plugin-electron-builder
https://nklayman.github.io/vue-cli-plugin-electron-builder/guide/#installation 用cnpm安装 cnpm install ...
- Redis安装(Linux CentOS)
1. 环境介绍 主机系统:CentOS Redis版本:7.0.10 2. 安装过程 检查 GCC 版本 gcc -v redis 6.0 以上需要 gcc 5.3,升级 gcc.如果安装的redis ...
- centos如何换源
centos如何换源? 万事先备份 mkdir -p /etc/yum/backup/ cp -r /etc/yum.repos.d/* /etc/yum/backup/ 1.将源文件备份 cd /e ...
- lazy-nvim插件管理器基础入门
一篇通过使用lazy.nvim进行nvim插件管理的入门笔记. 基础安装 init.lua 路径:stdpath("config")/init.lua stdpath(" ...
- 云VR的未来发展方向
随着元宇宙元年的到来,VR正呈现出蓬勃的发展势头.然而,更好的用户体验大多依赖于高性能PC或主机进行本地渲染,这使得用户的VR消费成本更高,在一定程度上影响了产业发展,成为业界亟待解决的问题. 的确, ...
- JavaScript利用反射实现方法注入
1. 引言 反射是一种能够在程序运行时动态访问.修改某个类(对象)中属性和方法的机制 JavaScript在ES6中提供了Reflect 这一个内置的对象,它提供拦截 JavaScript 操作的方法 ...
- 记录--开始使用Vue 3时应避免的10个错误
这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 Vue 3 稳定已经有一段时间了.许多代码库正在生产中使用它,其他人最终也必须进行迁移.我有机会与它一起工作,并记录了我的错误,这可能是你 ...
- C# 调用C++DLL时释放非托管内存
方法一 改变非托管内存的分配方法,将其修改成采用COM的内存分配方法CoTaskMemAlloc来分配内存.这样封送拆收器在释放非托管内存时,就能自动调用COM的内存释放方法CoTaskMemFree ...