NumPy 正态分布与 Seaborn 可视化指南
正态分布(高斯分布)
简介
正态分布(也称为高斯分布)是一种非常重要的概率分布,它描述了许多自然和人为现象的数据分布情况。正态分布的形状呈钟形,其峰值位于平均值处,两侧对称下降。
特征
正态分布可以用两个参数来完全描述:
均值(μ):表示数据的平均值,分布的峰值位于 μ 处。
标准差(σ):表示数据的离散程度,数值越大,分布越平坦。
生成正态分布数据
NumPy 提供了 random.normal() 函数来生成服从正态分布的随机数。该函数接受以下参数:
loc:正态分布的均值,默认为 0。
scale:正态分布的标准差,默认为 1。
size:输出数组的形状。
示例:生成 100 个服从正态分布的随机数,均值为 5,标准差为 2:
import numpy as np
data = np.random.normal(loc=5, scale=2, size=100)
print(data)
可视化正态分布
Seaborn 库提供了便捷的函数来可视化分布,包括正态分布。
示例:绘制服从正态分布的数据的分布图:
import seaborn as sns
import numpy as np
data = np.random.normal(size=1000)
sns.distplot(data)
plt.show()
应用
正态分布在许多领域都有应用,例如:
统计学:用于推断总体参数,进行假设检验等。
机器学习:用于数据预处理,特征工程等。
金融:用于建模股票价格、汇率等金融数据。
工程:用于控制质量、可靠性分析等。
练习
- 生成 500 个服从正态分布的随机数,均值为 10,标准差为 3,并绘制它们的分布图。
- 比较不同标准差下正态分布形状的变化。
- 利用正态分布来模拟一次考试成绩,并计算平均分和标准分。
解决方案
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
# 1. 生成服从正态分布的随机数并绘制分布图
data = np.random.normal(loc=10, scale=3, size=500)
sns.distplot(data)
plt.show()
# 2. 比较不同标准差下正态分布形状的变化
sns.distplot(np.random.normal(size=1000, scale=1), label="σ=1")
sns.distplot(np.random.normal(size=1000, scale=2), label="σ=2")
sns.distplot(np.random.normal(size=1000, scale=3), label="σ=3")
plt.legend()
plt.show()
# 3. 模拟考试成绩并计算平均分和标准分
scores = np.random.normal(loc=80, scale=10, size=100)
print("平均分:", scores.mean())
print("标准分:", (scores - scores.mean()) / scores.std())
解释:
在第一个练习中,我们生成了 500 个服从正态分布的随机数,均值为 10,标准差为 3,并使用 Seaborn 的 distplot() 函数绘制了它们的分布图。
在第二个练习中,我们生成了三个服从正态分布的数据集,分别设置标准差为 1、2 和 3,并使用 Seaborn 的 distplot() 函数绘制了它们的分布图。我们可以观察到,随着标准差的增加,分布变得更加平坦,两侧的尾巴更加明显。
在第三个练习中,我们模拟了一次考试成绩,假设成绩服从正态分布,均值为 80,标准差为 10。然后,我们计算了考试成绩的平均分和标准分。
最后
为了方便其他设备和平台的小伙伴观看往期文章:
微信公众号搜索:Let us Coding,关注后即可获取最新文章推送
看完如果觉得有帮助,欢迎点赞、收藏、关注
NumPy 正态分布与 Seaborn 可视化指南的更多相关文章
- Python - Seaborn可视化:图形个性化设置的几个小技巧
1 概述 在可视化过程中,经常会对默认的制图效果不满意,希望能个性化进行各种设置. 本文通过一个简单的示例,来介绍seaborn可视化过程中的个性化设置.包括常用的设置,如: 设置图表显示颜色 设置图 ...
- Go内存分配器可视化指南【译】【精】
当我第一次开始尝试理解 Go 语言的内存分配器时,整个过程让我抓狂.一切看起来都像一个神秘的黑盒子.因为几乎所有技术魔法(technical wizardry)都隐藏在抽象之下,所以你需要一层一层的剥 ...
- Numpy使用Matplotlib实现可视化绘图
Numpy使用Matplotlib实现可视化绘图 可以直接将Numpy的数组传给Matplotlib实现可视化绘图: 曲线图 饼图 柱状图 直方图 1. 绘制正弦曲线 2. 绘制饼图 3. 柱状图 4 ...
- Python Seaborn综合指南,成为数据可视化专家
概述 Seaborn是Python流行的数据可视化库 Seaborn结合了美学和技术,这是数据科学项目中的两个关键要素 了解其Seaborn作原理以及使用它生成的不同的图表 介绍 一个精心设计的可视化 ...
- 『科学计算』可视化二元正态分布&3D科学可视化实战
二元正态分布可视化本体 由于近来一直再看kaggle的入门书(sklearn入门手册的感觉233),感觉对机器学习的理解加深了不少(实际上就只是调包能力加强了),联想到假期在python科学计算上也算 ...
- 转载:CSS3 Flexbox可视化指南
0. 目录 目录 引言 正文 1 引入 2 基础 3 使用 4 弹性容器Flex container属性 41 flex-direction 42 flex-wrap 43 flex-flow 44 ...
- Flexbox属性可视化指南
Flexbox 布局(国内很多人称为弹性布局)正式的全称为 CSS Flexible Box布局模块,它是CSS3新增的一种布局模式.它可以很方便地用来改善动态或未知大小的元素的对齐,方向和顺序等等. ...
- CSS3 Flexbox可视化指南
0. 目录 目录 引言 正文 1 引入 2 基础 3 使用 4 弹性容器Flex container属性 41 flex-direction 42 flex-wrap 43 flex-flow 44 ...
- CSS3 Flexbox(伸缩盒/弹性盒模型)可视化指南
在http://css.doyoe.com/(CSS参考手册)中,本文对应其中的伸缩盒 引入 Flexbox布局官方称为CSS Flexible Box Layout Module是一个CSS3新的布 ...
- seaborn可视化特征的相关性
import seaborn as sn sn.heatmap(trainX.corr(),vmax=1,square=True)
随机推荐
- 批处理及有状态等应用类型在 K8S 上应该如何配置?
众所周知, Kubernetes(K8S)更适合运行无状态应用, 但是除了无状态应用. 我们还会有很多其他应用类型, 如: 有状态应用, 批处理, 监控代理(每台主机上都得跑), 更复杂的应用(如:h ...
- Graph Embedding-DeepWalk
一言以蔽之,DeepWalk是在graph上,通过随机游走来产生一段定长的结点序列,并将其通过word2vec的方式获得各个结点的embedding的算法. DeepWalk一共涉及以下几个内容: 随 ...
- CentOS GNOME桌面下安装截图工具gnome-screenshot
CentOS GNOME桌面下安装截图工具gnome-screenshot 1.光盘安装 (1).把镜像光盘放进电脑 (2).切换到 Packages (3).[root@localhost Pack ...
- nginx重新整理——————nginx 的网络模型[九]
前言 简单介绍一下nginx的网络模型. 正文 网络拓扑图: 数据流: 网络传输大概是这样传输的. nginx 事件循环: 事件处理过程: 上面两张图什么意思呢? 其实就是说,nginx 是通过事件驱 ...
- 力扣745(java&python)-达到终点数字(中等)
题目: 在一根无限长的数轴上,你站在0的位置.终点在target的位置. 你可以做一些数量的移动 numMoves : 每次你可以选择向左或向右移动.第 i 次移动(从 i == 1 开始,到 i ...
- 力扣8(java)-字符串转整数(atoi)(中等)
题目: 请你来实现一个 myAtoi(string s) 函数,使其能将字符串转换成一个 32 位有符号整数(类似 C/C++ 中的 atoi 函数). 函数 myAtoi(string s) 的算法 ...
- 【pytorch学习】之线性代数
3 线性代数 3.1 标量 如果你曾经在餐厅支付餐费,那么应该已经知道一些基本的线性代数,比如在数字间相加或相乘.例如,北京的温度为52◦F(华氏度,除摄氏度外的另一种温度计量单位).严格来说,仅包含 ...
- AHPA:开启 Kubernetes 弹性预测之门
简介:阿里巴巴云原生团队和阿里达摩院决策智能时序团队合作开发 AHPA 弹性预测产品,该产品主要出发点是基于检测到的周期做"定时规划",通过规划实现提前扩容的目的,在保证业务稳定 ...
- Snowflake核心技术解读系列——架构设计
简介:Snowflake取得了巨大的商业成功,技术是如何支撑起它的千亿美元市值呢?它技术强在哪?本文为大家倾情解读Snowflake的核心技术原理. 背景:2020年9月16日,Snowflake成 ...
- 从0开始:500行代码实现 LSM 数据库
简介: LSM-Tree 是很多 NoSQL 数据库引擎的底层实现,例如 LevelDB,Hbase 等.本文基于<数据密集型应用系统设计>中对 LSM-Tree 数据库的设计思路,结合代 ...