正态分布(高斯分布)

简介

正态分布(也称为高斯分布)是一种非常重要的概率分布,它描述了许多自然和人为现象的数据分布情况。正态分布的形状呈钟形,其峰值位于平均值处,两侧对称下降。

特征

正态分布可以用两个参数来完全描述:

均值(μ):表示数据的平均值,分布的峰值位于 μ 处。

标准差(σ):表示数据的离散程度,数值越大,分布越平坦。

生成正态分布数据

NumPy 提供了 random.normal() 函数来生成服从正态分布的随机数。该函数接受以下参数:

loc:正态分布的均值,默认为 0。

scale:正态分布的标准差,默认为 1。

size:输出数组的形状。

示例:生成 100 个服从正态分布的随机数,均值为 5,标准差为 2:

import numpy as np

data = np.random.normal(loc=5, scale=2, size=100)
print(data)

可视化正态分布

Seaborn 库提供了便捷的函数来可视化分布,包括正态分布。

示例:绘制服从正态分布的数据的分布图:

import seaborn as sns
import numpy as np data = np.random.normal(size=1000) sns.distplot(data)
plt.show()

应用

正态分布在许多领域都有应用,例如:

统计学:用于推断总体参数,进行假设检验等。

机器学习:用于数据预处理,特征工程等。

金融:用于建模股票价格、汇率等金融数据。

工程:用于控制质量、可靠性分析等。

练习

  1. 生成 500 个服从正态分布的随机数,均值为 10,标准差为 3,并绘制它们的分布图。
  2. 比较不同标准差下正态分布形状的变化。
  3. 利用正态分布来模拟一次考试成绩,并计算平均分和标准分。

解决方案

import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt # 1. 生成服从正态分布的随机数并绘制分布图
data = np.random.normal(loc=10, scale=3, size=500)
sns.distplot(data)
plt.show() # 2. 比较不同标准差下正态分布形状的变化
sns.distplot(np.random.normal(size=1000, scale=1), label="σ=1")
sns.distplot(np.random.normal(size=1000, scale=2), label="σ=2")
sns.distplot(np.random.normal(size=1000, scale=3), label="σ=3")
plt.legend()
plt.show() # 3. 模拟考试成绩并计算平均分和标准分
scores = np.random.normal(loc=80, scale=10, size=100)
print("平均分:", scores.mean())
print("标准分:", (scores - scores.mean()) / scores.std())

解释:

在第一个练习中,我们生成了 500 个服从正态分布的随机数,均值为 10,标准差为 3,并使用 Seaborn 的 distplot() 函数绘制了它们的分布图。

在第二个练习中,我们生成了三个服从正态分布的数据集,分别设置标准差为 1、2 和 3,并使用 Seaborn 的 distplot() 函数绘制了它们的分布图。我们可以观察到,随着标准差的增加,分布变得更加平坦,两侧的尾巴更加明显。

在第三个练习中,我们模拟了一次考试成绩,假设成绩服从正态分布,均值为 80,标准差为 10。然后,我们计算了考试成绩的平均分和标准分。

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

NumPy 正态分布与 Seaborn 可视化指南的更多相关文章

  1. Python - Seaborn可视化:图形个性化设置的几个小技巧

    1 概述 在可视化过程中,经常会对默认的制图效果不满意,希望能个性化进行各种设置. 本文通过一个简单的示例,来介绍seaborn可视化过程中的个性化设置.包括常用的设置,如: 设置图表显示颜色 设置图 ...

  2. Go内存分配器可视化指南【译】【精】

    当我第一次开始尝试理解 Go 语言的内存分配器时,整个过程让我抓狂.一切看起来都像一个神秘的黑盒子.因为几乎所有技术魔法(technical wizardry)都隐藏在抽象之下,所以你需要一层一层的剥 ...

  3. Numpy使用Matplotlib实现可视化绘图

    Numpy使用Matplotlib实现可视化绘图 可以直接将Numpy的数组传给Matplotlib实现可视化绘图: 曲线图 饼图 柱状图 直方图 1. 绘制正弦曲线 2. 绘制饼图 3. 柱状图 4 ...

  4. Python Seaborn综合指南,成为数据可视化专家

    概述 Seaborn是Python流行的数据可视化库 Seaborn结合了美学和技术,这是数据科学项目中的两个关键要素 了解其Seaborn作原理以及使用它生成的不同的图表 介绍 一个精心设计的可视化 ...

  5. 『科学计算』可视化二元正态分布&3D科学可视化实战

    二元正态分布可视化本体 由于近来一直再看kaggle的入门书(sklearn入门手册的感觉233),感觉对机器学习的理解加深了不少(实际上就只是调包能力加强了),联想到假期在python科学计算上也算 ...

  6. 转载:CSS3 Flexbox可视化指南

    0. 目录 目录 引言 正文 1 引入 2 基础 3 使用 4 弹性容器Flex container属性 41 flex-direction 42 flex-wrap 43 flex-flow 44 ...

  7. Flexbox属性可视化指南

    Flexbox 布局(国内很多人称为弹性布局)正式的全称为 CSS Flexible Box布局模块,它是CSS3新增的一种布局模式.它可以很方便地用来改善动态或未知大小的元素的对齐,方向和顺序等等. ...

  8. CSS3 Flexbox可视化指南

    0. 目录 目录 引言 正文 1 引入 2 基础 3 使用 4 弹性容器Flex container属性 41 flex-direction 42 flex-wrap 43 flex-flow 44 ...

  9. CSS3 Flexbox(伸缩盒/弹性盒模型)可视化指南

    在http://css.doyoe.com/(CSS参考手册)中,本文对应其中的伸缩盒 引入 Flexbox布局官方称为CSS Flexible Box Layout Module是一个CSS3新的布 ...

  10. seaborn可视化特征的相关性

    import seaborn as sn sn.heatmap(trainX.corr(),vmax=1,square=True)

随机推荐

  1. 京东一面:如何在SpringBoot启动时执行特定代码?有哪些方式?

    引言 Spring Boot 提供了许多便捷的功能和特性,使得开发者可以更加轻松地构建强大.高效的应用程序.然而,在应用程序启动时执行一些初始化操作是至关重要的,它可以确保应用程序在启动后处于预期的状 ...

  2. HDC2021技术分论坛:广发证券携手HarmonyOS打造智慧金融服务

    以下文章来源于广发证券科技金融 ,作者GFS 本期我们给大家带来的是广发证券前端开发工程师黄钦佳的分享,希望能给你的HarmonyOS开发之旅带来启发~ 10月22日,华为开发者大会2021(Toge ...

  3. HDC.Together2023 HarmonyOS学生公开课议程抢先看!

     未来已来,见证相遇 万众瞩目的HarmonyOS学生公开课 于8月6日9:30正式起航 关注HarmonyOS生态前景 聚焦HarmonyOS新技术 畅谈HarmonyOS未来 把握时代发展机遇,让 ...

  4. redis 简单整理——开发和运维中的问题[二十四]

    前言 简单介绍一下开发和运维中的问题. 正文 从上文中介绍了,我们有了一个副本了,通过复制的方式. 这些副本可以应用于读写分 离.故障转移(failover).实时备份等场景. 那么可以关注一些开发和 ...

  5. CPVT:美团提出动态位置编码,让ViT的输入更灵活 | ICLR 2023

    论文提出了一种新的ViT位置编码CPE,基于每个token的局部邻域信息动态地生成对应位置编码.CPE由卷积实现,使得模型融合CNN和Transfomer的优点,不仅可以处理较长的输入序列,也可以在视 ...

  6. Oracle ORA-12725 unmatched parentheses in regular expression

    Oracle ORA-12725 unmatched parentheses in regular expression 简单来说就是正则表达式中的括号问题 这种一般就可以锁定使用正则的函数,例如 r ...

  7. 力扣344(java & python)-反转字符串(简单)

    题目: 编写一个函数,其作用是将输入的字符串反转过来.输入字符串以字符数组 s 的形式给出. 不要给另外的数组分配额外的空间,你必须原地修改输入数组.使用 O(1) 的额外空间解决这一问题. 示例 1 ...

  8. 力扣150(java)-逆波兰表达式求值(中等)

    题目: 根据 逆波兰表示法,求表达式的值. 有效的算符包括 +.-.*./ .每个运算对象可以是整数,也可以是另一个逆波兰表达式. 注意 两个整数之间的除法只保留整数部分. 可以保证给定的逆波兰表达式 ...

  9. 应用容灾中,MySQL数据表是否需要跨云同步?

    简介: 容灾系统的重要目标在于保证系统数据和服务的"连续性".当系统发生故障时,容灾系统能够快速恢复服务和保证数据的有效性.为了防止天灾人祸.不可抗力,在同城或异地建立对应的IT系 ...

  10. 内含干货PPT下载|一站式数据管理DMS及最新解决方案发布

    ​简介: 今天主要给大家介绍一站式数据管理平台DMS以及解决方案的发布.议题包含企业数据管理当前的一些痛,DMS一站式数据管理平台以及其核心技术,实时数仓解决方案以及相应的应用实践. "数聚 ...