将树形递归转换为loop
class Stack(object):
def __init__(self,**kwargs):
self.__dict__.update(kwargs)
def __str__(self):
return '|'.join(
['%s:%s'%(k,getattr(self,k))
for k in sorted(self.__dict__)])
__repr__ = __str__ def fab(n):
if n==1 or n==2:
return 1
return fab(n-1) + fab(n-2) def xfab(n):
rst = 0
stack = [Stack(n=n,stage=0)]
while stack:
#print(stack,rst)
crt=stack.pop()
if crt.stage == 0:
if crt.n == 1 or crt.n == 2:
rst = 1
continue
else:
crt.stage = 1
stack.append(crt)
stack.append(Stack(n=crt.n-1,stage=0))
continue
if crt.stage == 1:
crt.adv = rst
crt.stage = 2
stack.append(crt)
stack.append(Stack(n=crt.n-2,stage=0))
continue
if crt.stage == 2:
rst = crt.adv + rst
continue
return rst
虽然loop繁杂多了,但是它有以下好处:
1.不会像递归函数那样栈溢出
2.对递归过程有了更多控制,例如你可以选择广度优先
再如:
#----------递归--------------------------------
def tmove(n,a=0,b=1,c=2):
if n==1:
yield a,c
else:
yield from tmove(n-1,a,c,b)
yield a,c
yield from tmove(n-1,b,a,c) def fmove(n,a=0,b=1,c=2,d=3):
if n==1:
yield a,d
else:
i = int((math.sqrt(1+8*n)-1)/2)
yield from fmove(n-i,a,d,b,c)
yield from tmove(i,a,b,d)
yield from fmove(n-i,c,b,a,d) #----------循环--------------------------------
def xtmove(n,a=0,b=1,c=2):
stack = [Stack(n=n,a=a,b=b,c=c,stage=0)]
while stack:
crt=stack.pop()
if crt.n == 1:
yield crt.a,crt.c
continue
if crt.stage==0:
crt.stage=1
stack.append(crt)
stack.append(Stack(n=crt.n-1,a=crt.a,b=crt.c,c=crt.b,stage=0))
continue
if crt.stage==1:
yield crt.a,crt.c
stack.append(Stack(n=crt.n-1,a=crt.b,b=crt.a,c=crt.c,stage=0)) def xfmove(n,a=0,b=1,c=2,d=3):
stack = [Stack(n=n,a=a,b=b,c=c,d=d,stage=0)]
while stack:
crt=stack.pop()
if crt.n == 1:
yield crt.a,crt.d
continue
i = int((math.sqrt(1+8*crt.n)-1)/2)
if crt.stage==0:
crt.stage=1
stack.append(crt)
stack.append(Stack(n=crt.n-i,a=crt.a,b=crt.d,c=crt.b,d=crt.c,stage=0))
continue
if crt.stage==1:
yield from xtmove(n=i,a=crt.a,b=crt.b,c=crt.d)
stack.append(Stack(n=crt.n-i,a=crt.c,b=crt.b,c=crt.a,d=crt.d,stage=0)) if __name__=='__main__':
for x,y in xfmove(10000000000):
pass
for x,y in fmove(10000000000):
pass
虽然不太清楚实践中会不会出现这种巨大的参数以至于让递归栈溢出,但至少心里有个底了,以后处理复杂问题,先构建递归函数,再写个loop版.
小参数用递归,大参数就用loop.
将树形递归转换为loop的更多相关文章
- 记住经典的斐波拉契递归和阶乘递归转换为while规律
记住经典的斐波拉契递归和阶乘递归转换为while规律.它为实现更复杂转换提供了启发性思路. # 斐波拉契--树形递归 def fab(n): if n<3: return n return fa ...
- 斯坦福NLP课程 | 第18讲 - 句法分析与树形递归神经网络
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...
- 一个貌似比较吊的递归转换为loop--总算成功了.--第二弹
前段时间用类似于散弹式编程的方式,各种猜测-运行验证-修正结果,最终成功转换了一个看起来比较有难度的递归函数.但总觉得很蛋疼,原因如下: 1.虽然正确,但是逻辑搞得比较复杂.现在去看,一头雾水,不知道 ...
- 一个貌似比较吊的递归转换为loop--总算成功了.
class Stack(object): """ A class to hold arguements and state data. """ ...
- 不规则递归转换为while,留底
我发现当参数并不太多时,从性能的角度来看,没必要用一个class来保存参数(虽然看起来更加生动形象),直接用最简单的元组就可以了. from hanoi import * # example tree ...
- 递归转手工栈处理的一般式[C语言]
是任意形式的递归,是化解的一般式. 主题所谓的“递归调用化解为栈处理”,意思是,将递归函数调用化解为“一个由stack_push stack_pop stack_top等函数调用组成的循环式子”.这里 ...
- JS 树形结构与数组结构相互转换、在树形结构中查找对象
总是有很多需求是关于处理树形结构的,所以不得不总结几个常见操作的写法.¯\_(ツ)_/¯ 首先假设有一个树形结构数据如下 var tree=[ { 'id': '1', 'name': '教学素材管理 ...
- 用Python递归解决阿拉伯数字转为中文财务数字格式的问题(2)--打开思路的一种方法
几天前自己写了个将阿拉伯数字转为中文财务数字的程序.用的递归,不幸的是它是树形递归. 虽然实际过程中不太可能出现金额数字大到让Python递归栈溢出,但是始终是一块心病,这玩意终究在理论上是受限制的. ...
- 【PHP】php 递归、效率和分析(转)
递归的定义 递归(http:/en.wikipedia.org/wiki/Recursive)是一种函数调用自身(直接或间接)的一种机制,这种强大的思想可以把某些复杂的概念变得极为简单.在计算机科学之 ...
随机推荐
- [LeetCode] Minimum Absolute Difference in BST 二叉搜索树的最小绝对差
Given a binary search tree with non-negative values, find the minimum absolute difference between va ...
- 生成和配置https证书
最近在做小程序,调用后台接口需要https协议请求,小程序之所以这么要求,也是因为http协议是明文传播文件数据的,出于数据安全考虑,必须使用https协议. http想实现为https 就需要为配置 ...
- [NOIp 2017]逛公园
Description 策策同学特别喜欢逛公园.公园可以看成一张$N$个点$M$条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,$N$号点是公园的出口,每条边有一个非负权值, 代表策策经 ...
- [SDOI2014]重建
题目描述 T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 辛运的是,此前T国 ...
- [HAOI2011]向量
题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...
- HDU5339——Untitled
Problem Description There is an integer a and n integers b1,…,bn. After selecting some numbers from ...
- POJ 3045 Cow Acrobats
Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...
- C# 枚举在项目中使用心得
阅读目录 基本介绍 使用注意 使用方法 扩展用法 本文主要是我在项目中对C#枚举的使用心得,如有不足的地方欢迎您指出. 一.基本介绍 枚举是由一组特定常量构成的一组数据结构,是值类型的一种特 ...
- seq2seq-chatbot:200 行代码实现聊天机器人
Chatbot in 200 lines of code CPU 跑不动 github:https://github.com/zsdonghao/seq2seq-chatbot 更多英文,中文聊天机器 ...
- iOS 定位简单使用
一.配置 导入库CoreLocation. 2.info.plist配置key NSLocationWhenInUseUsageDescription和NSLocationAlwaysUsageDes ...