class Stack(object):
def __init__(self,**kwargs):
self.__dict__.update(kwargs)
def __str__(self):
return '|'.join(
['%s:%s'%(k,getattr(self,k))
for k in sorted(self.__dict__)])
__repr__ = __str__ def fab(n):
if n==1 or n==2:
return 1
return fab(n-1) + fab(n-2) def xfab(n):
rst = 0
stack = [Stack(n=n,stage=0)]
while stack:
#print(stack,rst)
crt=stack.pop()
if crt.stage == 0:
if crt.n == 1 or crt.n == 2:
rst = 1
continue
else:
crt.stage = 1
stack.append(crt)
stack.append(Stack(n=crt.n-1,stage=0))
continue
if crt.stage == 1:
crt.adv = rst
crt.stage = 2
stack.append(crt)
stack.append(Stack(n=crt.n-2,stage=0))
continue
if crt.stage == 2:
rst = crt.adv + rst
continue
return rst

虽然loop繁杂多了,但是它有以下好处:

1.不会像递归函数那样栈溢出

2.对递归过程有了更多控制,例如你可以选择广度优先

再如:

#----------递归--------------------------------
def tmove(n,a=0,b=1,c=2):
if n==1:
yield a,c
else:
yield from tmove(n-1,a,c,b)
yield a,c
yield from tmove(n-1,b,a,c) def fmove(n,a=0,b=1,c=2,d=3):
if n==1:
yield a,d
else:
i = int((math.sqrt(1+8*n)-1)/2)
yield from fmove(n-i,a,d,b,c)
yield from tmove(i,a,b,d)
yield from fmove(n-i,c,b,a,d) #----------循环--------------------------------
def xtmove(n,a=0,b=1,c=2):
stack = [Stack(n=n,a=a,b=b,c=c,stage=0)]
while stack:
crt=stack.pop()
if crt.n == 1:
yield crt.a,crt.c
continue
if crt.stage==0:
crt.stage=1
stack.append(crt)
stack.append(Stack(n=crt.n-1,a=crt.a,b=crt.c,c=crt.b,stage=0))
continue
if crt.stage==1:
yield crt.a,crt.c
stack.append(Stack(n=crt.n-1,a=crt.b,b=crt.a,c=crt.c,stage=0)) def xfmove(n,a=0,b=1,c=2,d=3):
stack = [Stack(n=n,a=a,b=b,c=c,d=d,stage=0)]
while stack:
crt=stack.pop()
if crt.n == 1:
yield crt.a,crt.d
continue
i = int((math.sqrt(1+8*crt.n)-1)/2)
if crt.stage==0:
crt.stage=1
stack.append(crt)
stack.append(Stack(n=crt.n-i,a=crt.a,b=crt.d,c=crt.b,d=crt.c,stage=0))
continue
if crt.stage==1:
yield from xtmove(n=i,a=crt.a,b=crt.b,c=crt.d)
stack.append(Stack(n=crt.n-i,a=crt.c,b=crt.b,c=crt.a,d=crt.d,stage=0)) if __name__=='__main__':
for x,y in xfmove(10000000000):
pass
for x,y in fmove(10000000000):
pass

虽然不太清楚实践中会不会出现这种巨大的参数以至于让递归栈溢出,但至少心里有个底了,以后处理复杂问题,先构建递归函数,再写个loop版.

小参数用递归,大参数就用loop.

将树形递归转换为loop的更多相关文章

  1. 记住经典的斐波拉契递归和阶乘递归转换为while规律

    记住经典的斐波拉契递归和阶乘递归转换为while规律.它为实现更复杂转换提供了启发性思路. # 斐波拉契--树形递归 def fab(n): if n<3: return n return fa ...

  2. 斯坦福NLP课程 | 第18讲 - 句法分析与树形递归神经网络

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  3. 一个貌似比较吊的递归转换为loop--总算成功了.--第二弹

    前段时间用类似于散弹式编程的方式,各种猜测-运行验证-修正结果,最终成功转换了一个看起来比较有难度的递归函数.但总觉得很蛋疼,原因如下: 1.虽然正确,但是逻辑搞得比较复杂.现在去看,一头雾水,不知道 ...

  4. 一个貌似比较吊的递归转换为loop--总算成功了.

    class Stack(object): """ A class to hold arguements and state data. """ ...

  5. 不规则递归转换为while,留底

    我发现当参数并不太多时,从性能的角度来看,没必要用一个class来保存参数(虽然看起来更加生动形象),直接用最简单的元组就可以了. from hanoi import * # example tree ...

  6. 递归转手工栈处理的一般式[C语言]

    是任意形式的递归,是化解的一般式. 主题所谓的“递归调用化解为栈处理”,意思是,将递归函数调用化解为“一个由stack_push stack_pop stack_top等函数调用组成的循环式子”.这里 ...

  7. JS 树形结构与数组结构相互转换、在树形结构中查找对象

    总是有很多需求是关于处理树形结构的,所以不得不总结几个常见操作的写法.¯\_(ツ)_/¯ 首先假设有一个树形结构数据如下 var tree=[ { 'id': '1', 'name': '教学素材管理 ...

  8. 用Python递归解决阿拉伯数字转为中文财务数字格式的问题(2)--打开思路的一种方法

    几天前自己写了个将阿拉伯数字转为中文财务数字的程序.用的递归,不幸的是它是树形递归. 虽然实际过程中不太可能出现金额数字大到让Python递归栈溢出,但是始终是一块心病,这玩意终究在理论上是受限制的. ...

  9. 【PHP】php 递归、效率和分析(转)

    递归的定义 递归(http:/en.wikipedia.org/wiki/Recursive)是一种函数调用自身(直接或间接)的一种机制,这种强大的思想可以把某些复杂的概念变得极为简单.在计算机科学之 ...

随机推荐

  1. Python模块之 - logging

    日志是非常重要的,最近有接触到这个,所以系统的看一下Python这个模块的用法.本文即为Logging模块的用法简介,主要参考文章为Python官方文档,链接见参考列表. Logging模块构成 组成 ...

  2. 使用python实现人脸检测

    人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下: 多张脸 ...

  3. 关于wooyun-2015-096990的总结

    漏洞url:http://wooyun.jozxing.cc/static/bugs/wooyun-2015-096990.html 摘要 if(!ini_get('register_globals' ...

  4. [WC2013]糖果公园

    Description 题库链接 给你一棵 $n$ 个节点,有 $m$种颜色的树.每个节点上有一个颜色.定义一条树上路径的价值为 $sum_c V_c(\sum_{i=1}^{tim_c}W_i)$ ...

  5. [HNOI2011]任务调度

    题目描述 有 N 个任务和两台机器 A 与 B.每个任务都需要既在机器 A 上执行,又在机器 B 上执行, 第 i 个任务需要在机器 A 上执行时间 Ai,且需要在机器 B 上执行时间 Bi.最终的目 ...

  6. 【USACO】电子游戏 有条件的背包

    题目描述 翰的奶牛玩游戏成瘾!本来约翰是想把她们拖去电击治疗的,但是他发现奶牛们在玩游戏后生产 了更多的牛奶,也就支持它们了. 但是,奶牛在选择游戏平台上的分歧很大:有些奶牛想买 Xbox 360 来 ...

  7. xml 制作 RSS 订阅源

    首先制作一个 RSS 模板,模板的文件名是 feed.xml,代码如下: <?xml version="1.0" encoding="utf-8"?> ...

  8. WebDNN:Web浏览器上最快的DNN执行框架

    WebDNN:Web浏览器上最快的DNN执行框架 为什么需要WebDNN? 深层神经网络(DNN)在许多应用中受到越来越多的关注. 然而,它需要大量的计算资源,并且有许多巨大的过程来设置基于执行环境的 ...

  9. Java自定义注解的实现

    Java自定义注解的实现,总共三步(eg.@RandomlyThrowsException): 1.首先编写一个自定义注解@RandomlyThrowsException package com.gi ...

  10. JVM内部原理

    这篇文章详细描述了Java虚拟机的内在结构.下面这张图来自<The Java Virtual Machine Specification Java SE 7 Edition>,它展示了一个 ...