[HNOI2001]矩阵乘积
题目描述

输入输出格式
输入格式:
第1行为:x y (第1行为两个正整数:x,y分别表示输出结果所在的行和列)
第2行为:m n o p(第2行给出的正整数表明A为m×n矩阵,B为n×o矩阵,C为o×p矩阵)
第3行为:i j a(第3行以后的每一行有三个整数分别是矩阵的三元组表示法中的一个元素的值,每个矩阵之间有一个空行。表示的顺序是矩阵A、B和C)
… … … … … …
注:1≤m,n,o,p≤6000,三元数组的总个数不大于6000。数据之间用空格分开。
输出格式:
为 的第x行第y列元素的值。
输入输出样例
1 2
3 4 2 3
1 1 3
1 4 5
2 2 1
3 1 2 1 2 2
2 1 1
3 1 2
3 2 4 1 2 2
1 3 3
2 1 1
2 2 2
12
只需要(x,y)的值
ans(x,y)=∑B[x][k]*c[k][y]
B[i][k]=∑a[i][p]*b[p][k]
所以可以只求一部分的值
输入部分用一种水法,还好数据弱
如果前面输入(i,j),后面输入(a,b)
(a,b)<(i,j) 则为另一矩阵
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int m,n,o,p,x,y,A[],B[];
int main()
{int a,b,c,i,j,z;
cin>>x>>y;
cin>>m>>n>>o>>p;
scanf("%d%d%d",&a,&b,&z);
while ()
{
if (a==x) A[b]=z;
scanf("%d%d%d",&i,&j,&c);
if (i<a||(i==a&&j<=b)) break;
a=i;b=j;z=c;
}
a=i;b=j;z=c;
while ()
{
B[b]+=A[a]*z;
scanf("%d%d%d",&i,&j,&c);
if (i<a||(i==a&&j<=b)) break;
a=i;b=j;z=c;
}
memcpy(A,B,sizeof(A));
memset(B,,sizeof(B));
a=i;b=j;z=c;
while ()
{
if (b==y) B[b]+=A[a]*z;
scanf("%d%d%d",&i,&j,&c);
if (i<a||(i==a&&j<=b)) break;
a=i;b=j;z=c;
}
cout<<B[y]<<endl;
}
[HNOI2001]矩阵乘积的更多相关文章
- 卷积、矩阵乘积、高斯模糊滤波(降噪)、空域计算(2D卷积计算)、频域计算(FFT)的理解
矩阵乘积:对应行列对应元素相乘的和组成新的矩阵 两个矩阵的乘法仅当第一个矩阵A的列数和另一个矩阵B的行数相等时才能定义.如A是m×n矩阵和B是n×p矩阵,它们的乘积C是一个m×p矩阵 并将此乘积记为: ...
- hdu 5068 线段树维护矩阵乘积
http://acm.hdu.edu.cn/showproblem.php?pid=5068 题意给的略不清晰 m个询问:从i层去j层的方法数(求连段乘积)或者修改从x层y门和x+1层z门的状态反转( ...
- 2014 HDU多校弟五场J题 【矩阵乘积】
题意很简单,就是两个大矩阵相乘,然后求乘积. 用 Strassen算法 的话,当N的规模达到100左右就会StackOverFlow了 况且输入的数据范围可达到800,如果变量还不用全局变量的话连内存 ...
- ZOJ - 2671 Cryptography(线段树+求区间矩阵乘积)
题意:已知n个矩阵(下标从1开始),求下标x~y区间矩阵的乘积.最多m次询问,n ( 1 <= n <= 30,000) and m ( 1 <= m <= 30,000). ...
- [HNOI 2001]矩阵乘积
Description Input Output Sample Input 1 2 3 4 2 3 1 1 3 1 4 5 2 2 1 3 1 2 1 2 2 2 1 1 3 1 2 3 2 4 1 ...
- HDU 4920 矩阵乘积 优化
Matrix multiplication Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/ ...
- HihoCode-1675-稀疏矩阵乘积
上来先一顿暴力,结果70分就超时了. 然后意识到稀疏矩阵,有很多0,如果c[i][j] != 0,那么一定存在至少一个k满足a[i][k] != 0 && b[k][j] != 0; ...
- [图解tensorflow源码] MatMul 矩阵乘积运算 (前向计算,反向梯度计算)
- CF719E(线段树+矩阵快速幂)
题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...
随机推荐
- 配置 CSV Data Set Config 来参数化新增客户信息操作
1.首先根据新增客户信息的http请求,来确定需要参数化的变量,选取符合测试需求且经常变化或未来会变化的变量为需要参数化的变量,如本文中的客户端名称(sys_name).描述(description) ...
- C语言嵌套循环作业
一.PTA实验作业 题目1:7-4 换硬币 1. 本题PTA提交列表 2. 设计思路 1.定义fen5:5分硬币数量, fen2:2分硬币数量, fen1:1分硬币数量, total:硬币总数量,co ...
- Android开发简易教程
Android开发简易教程 Android 开发因为涉及到代码编辑.UI 布局.打包等工序,有一款好用的IDE非常重要.Google 最早提供了基于 Eclipse 的 ADT 作为开发工具,后来在2 ...
- 修改MYSQL的默认连接时长
show global variables like 'wait_timeout'; 设置成10小时; set global wait_timeout=36000;
- 超绚丽CSS3多色彩发光立方体旋转动画
CSS3添加了几个动画效果的属性,通过设置这些属性,可以做出一些简单的动画效果而不需要再去借助JavaScript.css3动画的属性主要分为三类:transform.transition以及anim ...
- nyoj 还是回文
还是回文 时间限制:2000 ms | 内存限制:65535 KB 难度:3 描述 判断回文串很简单,把字符串变成回文串也不难.现在我们增加点难度,给出一串字符(全部是小写字母),添加或删除一个字符, ...
- 什么是MQTT协议?
MQTT协议介绍 MQTT协议是什么? MQTT(Message Queuing Telemetry Transport Protocol)的全称是消息队列遥感传输协议的缩写,是一种基于轻量级代理的发 ...
- Python模块 - paramiko
paramiko模块提供了ssh及sft进行远程登录服务器执行命令和上传下载文件的功能.这是一个第三方的软件包,使用之前需要安装. 1 基于用户名和密码的 sshclient 方式登录 # 建立一个s ...
- word2vec初探(用python简单实现)
为什么要用这个? 因为看论文和博客的时候很常见,不论是干嘛的,既然这么火,不妨试试. 如何安装 从网上爬数据下来 对数据进行过滤.分词 用word2vec进行近义词查找等操作 完整的工程传到了我的gi ...
- 消息队列的使用 RabbitMQ (二): Windows 环境下集群的实现
一.RabbitMQ 集群的基本概念 一个 RabbitMQ 中间件(broker) 由一个或多个 erlang 节点组成,节点之间共享 用户名.虚拟目录.队列消息.运行参数 等, 这个 节点的集合被 ...