Art Gallery
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 6668   Accepted: 2725

Description

The art galleries of the new and very futuristic building of the Center for Balkan Cooperation have the form of polygons (not necessarily convex). When a big exhibition is organized, watching over all of the pictures is a big security concern. Your task is that for a given gallery to write a program which finds the surface of the area of the floor, from which each point on the walls of the gallery is visible. On the figure 1. a map of a gallery is given in some co-ordinate system. The area wanted is shaded on the figure 2. 

Input

The number of tasks T that your program have to solve will be on the first row of the input file. Input data for each task start with an integer N, 5 <= N <= 1500. Each of the next N rows of the input will contain the co-ordinates of a vertex of the polygon ? two integers that fit in 16-bit integer type, separated by a single space. Following the row with the co-ordinates of the last vertex for the task comes the line with the number of vertices for the next test and so on.

Output

For each test you must write on one line the required surface - a number with exactly two digits after the decimal point (the number should be rounded to the second digit after the decimal point).

Sample Input

1
7
0 0
4 4
4 7
9 7
13 -1
8 -6
4 -4

Sample Output

80.00
/*
poj 1279 半平面交核面积 给你一个多边形的图书馆.要求得到一块地方能看见墙上所有的点,并求出面积
在半平面模板上加个求面积公式即可.
而且输入并没有指定顺时针还是逆时针,可以通过求面积进行判断. hhh-2016-05-11 21:01:47
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const int maxn = 1510;
const double PI = 3.1415926;
const double eps = 1e-8; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
double k;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
k = atan2(t.y-s.y,t.x-s.x);
}
Point operator &(const Line &b) const
{
Point res = s;
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return res;
}
}; bool HPIcmp(Line a,Line b)
{
if(fabs(a.k-b.k) > eps) return a.k<b.k;
return ((a.s-b.s)^(b.t-b.s)) < 0;
}
Line li[maxn]; double CalArea(Point p[],int n)
{
double ans = 0;
for(int i = 0;i < n;i++)
{
ans += (p[i]^p[(i+1)%n])/2;
}
return ans;
} double HPI(Line line[],int n,Point res[],int &resn)
{
int tot =n;
sort(line,line+n,HPIcmp);
tot = 1;
for(int i = 1; i < n; i++)
{
if(fabs(line[i].k - line[i-1].k) > eps)
line[tot++] = line[i];
}
int head = 0,tail = 1;
li[0] = line[0];
li[1] = line[1];
resn = 0;
for(int i = 2; i < tot; i++)
{
if(fabs((li[tail].t-li[tail].s)^(li[tail-1].t-li[tail-1].s)) < eps||
fabs((li[head].t-li[head].s)^(li[head+1].t-li[head+1].s)) < eps)
return 0;
while(head < tail && (((li[tail] & li[tail-1]) - line[i].s) ^ (line[i].t-line[i].s)) > eps)
tail--;
while(head < tail && (((li[head] & li[head+1]) - line[i].s) ^ (line[i].t-line[i].s)) > eps)
head++;
li[++tail] = line[i];
}
while(head < tail && (((li[tail] & li[tail-1]) - li[head].s) ^ (li[head].t-li[head].s)) > eps)
tail--;
while(head < tail && (((li[head] & li[head-1]) - li[tail].s) ^ (li[tail].t-li[tail].t)) > eps)
head++;
if(tail <= head+1)
return 0;
for(int i = head; i < tail; i++)
res[resn++] = li[i]&li[i+1];
if(head < tail-1)
res[resn++] = li[head]&li[tail]; double tans = 0;
for(int i = 0;i < resn;i++)
{
tans += (res[i]^res[(i+1)%resn])/2;
}
return fabs(tans);
}
Point p0;
Point lis[maxn];
Line line[maxn];
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} bool cmp(Point a,Point b)
{
double t = (a-p0)^(b-p0);
if(sgn(t) > 0)return true;
else if(sgn(t) == 0 && sgn(dist(a,lis[0])-dist(b,lis[0])) <= 0)
return true;
else
return false;
} int main()
{
//freopen("in.txt","r",stdin);
int n,T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i = 0; i < n; i++)
{
scanf("%lf%lf",&lis[i].x,&lis[i].y);
}
int ans;
if(CalArea(lis,n) < 0)
reverse(lis,lis+n);
for(int i = 0; i < n; i++)
{
line[i] = Line(lis[i],lis[(i+1)%n]);
}
printf("%.2f\n",HPI(line,n,lis,ans));
}
return 0;
}

  

poj 1279 半平面交核面积的更多相关文章

  1. poj 1755 半平面交+不等式

    Triathlon Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6461   Accepted: 1643 Descrip ...

  2. poj 3335 /poj 3130/ poj 1474 半平面交 判断核是否存在 / poj1279 半平面交 求核的面积

    /*************** poj 3335 点序顺时针 ***************/ #include <iostream> #include <cmath> #i ...

  3. poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】

    <题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...

  4. POJ 3525 /// 半平面交 模板

    题目大意: 给定n,接下来n行逆时针给定小岛的n个顶点 输出岛内离海最远的点与海的距离 半平面交模板题 将整个小岛视为由许多半平面围成 那么以相同的比例缩小这些半平面 一直到缩小到一个点时 那个点就是 ...

  5. POJ 3525 半平面交+二分

    二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 #include <cstdio> #include <cstring> # ...

  6. POJ 3335 Rotating Scoreboard 半平面交求核

    LINK 题意:给出一个多边形,求是否存在核. 思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了 /** @Date : 2017-07-20 19: ...

  7. poj 1271 && uva 10117 Nice Milk (半平面交)

    uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem= ...

  8. poj 2451 Uyuw's Concert (半平面交)

    2451 -- Uyuw's Concert 继续半平面交,这还是简单的半平面交求面积,不过输入用cin超时了一次. 代码如下: #include <cstdio> #include &l ...

  9. bzoj 2618 半平面交模板+学习笔记

    题目大意 给你n个凸多边形,求多边形的交的面积 分析 题意\(=\)给你一堆边,让你求半平面交的面积 做法 半平面交模板 1.定义半平面为向量的左侧 2.将所有向量的起点放到一个中心,以中心参照进行逆 ...

随机推荐

  1. 设计模式NO.3

    设计模式NO.3 本次博客内容为第三次设计模式的练习.根据老师的要求完成下列题目: 题目1 某商品管理系统的商品名称存储在一个字符串数组中,现需要自定义一个双向迭代器(MyIterator)实现对该商 ...

  2. Flask 扩展 表单

    pip install flask-wtf 一个简单的表单 from flask_wtf import Form from wtforms import StringField from wtform ...

  3. [知识梳理]课本1&2.1-2.5

    面向对象的语言 出发点:更直接地描述客观世界中存在的事物(对象)以及它们之间的关系. 特点: 是高级语言. 将客观事物看作具有属性和行为的对象. 通过抽象找出同一类对象的共同属性和行为,形成类. 通过 ...

  4. 前端基础之html-Day12

    1.web服务本质 import socket def main(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bi ...

  5. Docker加速器(阿里云)

    1. 登录阿里开发者平台: https://dev.aliyun.com/search.html,https://cr.console.aliyun.com/#/accelerator,生成专属链接 ...

  6. restful架构风格设计准则(五)用户认证和session管理

    读书笔记,原文链接:http://www.cnblogs.com/loveis715/p/4669091.html,感谢作者! Authentication REST提倡无状态约束,这就要求:用户状态 ...

  7. HTTP协议扫盲(七)请求报文之 GET、POST-FORM 和 POST-FILE

    一.get 1.页面代码 2.请求报文 3.小结 get请求没有报文体,所以请求报文没有content-type url上的query参数param11=val11&param12=val12 ...

  8. Docker学习笔记 - Docker容器与外部网络的连接

    学习目的: ip_forward 包过滤防护墙 iptables 允许端口映射访问 限制ip访问容器 1.ip_forward 控制系统是否会转发流量 检查linux系统转发是否开启命令:sysctl ...

  9. OAuth2.0学习(1-4)授权方式1-授权码模式(authorization code)

    参与者列表: (1) Third-party application:第三方应用程序,又称客户端(client),如:"云冲印".社交应用. (2)HTTP service:HTT ...

  10. Python/MySQL(一、基础)

    Python/MySQL(一.基础) mysql: MYSQL : 是用于管理文件的一个软件 -socket服务端 (先启动) -本地文件操作 -解析 指令[SQL语句] -客户端软件 (各种各样的客 ...