UC Berkeley的Deepak Pathak 使用了一个具有图像级别标记的训练数据来做弱监督学习。训练数据中只给出图像中包含某种物体,但是没有其位置信息和所包含的像素信息。该文章的方法将image tags转化为对CNN输出的label分布的限制条件,因此称为 Constrained convolutional neural network (CCNN)。

该方法把训练过程看作是有线性限制条件的最优化过程:

其中是一个隐含的类别分布,是CNN预测的类别分布。目标函数是KL-divergence最小化。其中的线性限制条件来自于训练数据上的标记,例如一幅图像中前景类别像素个数期望值的上界或者下界(物体大小)、某个类别的像素个数在某图像中为0,或者至少为1等。该目标函数可以转化为为一个loss function,然后通过SGD进行训练。

实验中发现单纯使用Image tags作为限制条件得到的分割结果还比较差,在PASCAL VOC 2012 test数据集上得到的mIoU为35.6%,加上物体大小的限制条件后能达到45.1%, 如果再使用bounding box做限制,可以达到54%。FCN-8s可以达到62.2%,可见弱监督学习要取得好的结果还是比较难。

论文笔记(7):Constrained Convolutional Neural Networks for Weakly Supervised Segmentation的更多相关文章

  1. 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Go ...

  2. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  3. [论文阅读] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (MobileNet)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 本文提出的模型叫Mobi ...

  4. [论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Intro MobileNet 我 ...

  5. 论文笔记(2)-Dropout-Regularization of Neural Networks using DropConnect

    这篇paper使用DropConnect来规则化神经网络.dropconnect和dropout的区别如下图所示.dropout是随机吧隐含层的输出清空,而dropconnect是input unit ...

  6. CS231n笔记 Lecture 5 Convolutional Neural Networks

    一些ConvNets的应用 Face recognition 输入人脸,推测是谁 Video classfication Recognition 识别身体的部位, 医学图像, 星空, 标志牌, 鲸.. ...

  7. 《Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks》论文笔记

    论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Ne ...

  8. 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

    Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper ...

  9. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

随机推荐

  1. css设置兼容的透明样式

    css设置透明并实现兼容: <style>div{ filter: alpha(opacity=80); -moz-opacity: 0.8; -khtml-opacity: 0.8; o ...

  2. Python:main函数

    什么是函数? 一个程序可以包含多个模块,程序越复杂,包含的模块和功能就越多,模块细分里面包含多个类,类这个概念在任何一门面向对象语言里面都很重要,在类里面最主要的就是包含的函数,函数式实现某一个功能的 ...

  3. 如何在CentOS 7上部署Google BBR【搬运、机翻】

    如何在CentOS 7上部署Google BBR 本文章搬运自 https://www.vultr.com/docs/how-to-deploy-google-bbr-on-centos-7 [注:文 ...

  4. RAC节点两边存储名字不一致导致的故障及相关延伸

    起因:一个客户的实际故障,该故障非常典型,其他客户类似的环境也非常多,所以很值得梳理并记录下来. 环境:Oracle 11.2.0.4 RAC(2 nodes)+ RHEL 6.6 共享存储:EMC ...

  5. 隐藏文件的查看(Win/Linux/macOS)

    Windows(10): 点查看->点选项,弹出文件夹选项,点查看,高级设置里找到隐藏文件和文件夹这个选项,按需求选显示或者隐藏即可. Linux: Linux下,类似于.ssh开头的文件或者文 ...

  6. 危化品速查APP--Android Project

    开发环境 Android studio 2.3.1 功能描述 集成多种查询方式,查看本地数据库中危险化学品的信息: 按照中文拼音和英文首字母,对化学品进行查询: 按照UN号或者CAS号查询相应的化学品 ...

  7. CODE大全浅谈谷歌adsense与PIN码

    我的博客:CODE大全:www.codedq.net:业余草:www.xttblog.com:爱分享:www.ndislwf.com或ifxvn.com. 近期由于校园招聘笔试和面试等诸多忙碌时间,博 ...

  8. Oauth认证协议

    原文地址腾讯QQ第三方登录的实现原理? Oauth当中的角色: 1.Service Provider(服务提供方): 服务提供方通常是网站,在这些网站当中存储着一些受限制的资源,如照片.视频.联系人列 ...

  9. Android开发之Android Context Menu

    1 Creatinga上下文菜单, Todefine上下文菜单的外观和行为,推翻youractivity的上下文菜单回滚方法,onCreateContextMenu()和onContextItemSe ...

  10. 修改Cosbench源码 支持s3的 http range request 测试场景

    在视频点播的业务应用场景中,用户使用了ffmpeg工具做视频实时转码用. 而ffmpeg使用range 请求.而Cosbench不支持这种测试场景,所以需要修改源码支持这种测试场景. HTTP 协议介 ...