逆卷积的详细解释ConvTranspose2d(fractionally-strided convolutions)
1.首先先定义进行卷积的参数:
- 输入特征图为高宽一样的Hin*Hin大小的x
- 卷积核大小kernel_size
- 步长stride
- padding填充数(填充0)
- 输出特征图为Hout*Hout大小的y
计算式子为:
Hout = floor( Hin + 2*padding - kernel_size / stride) + 1
2.然后实现上面的卷积的转置卷积
定义其参数为:
- 输入特征图为高宽一样的Hout*Hout大小的y
- 卷积核大小kernel_size
- 步长stride
- paddingnew 填充数(填充0)
- 输出特征图为Hin*Hin大小的x
逆卷积的过程主要分两步:
- 对输入的特征图y进行变换,得到新的特征图ynew
- 内部变换,与卷积时设置的stride相关
- 外部变换,与卷积时设置的padding相关
- 根据得到的特征图进行卷积即可
1)对输入的特征图y进行变换,得到新的特征图ynew
1》内部变换
当卷积时设置的stride>1时,将对输入的特征图y进行插值操作(interpolation)。
即需要在输入的特征图y的每个相邻值之间插入(stride-1)行和列0,因为特征图中能够插入的相邻位置有(height-1)个位置,所以此时得到的特征图的大小由Hout*Hout(Hout即height) 变为新的 Hout_new*Hout_new,即[Hout + (stride-1) * (Hout-1)] * [Hout + (stride-1) * (Hout-1)]
2》外部变换
为了实现由Hout*Hout大小的y逆卷积得到Hin*Hin大小的x,还需要设置paddingnew的值为(kernel_size - padding - 1),这里的padding是卷积操作时设置的padding值
所以计算式子变为:
Hin = floor( [Hout_new + 2*paddingnew - kernel_size] / stride') + 1
⚠️该式子变换后,定义向下取整的分母stride'值为定值1
Hout_new和paddingnew的值代入上面的式子,即变为:
Hin = floor( Hout + (stride-1) * (Hout-1) + 2*(kernel_size - padding - 1) - kernel_size) + 1
化简为:
Hin = floor( (Hout - 1) * stride - 2*padding + kernel_size - 1) + 1
= (Hout - 1) * stride - 2*padding + kernel_size
这样式子使的卷积Conv2d和逆卷积ConvTranspose2d在初始化时具有相同的参数,而在输入和输出形状方面互为倒数。
所以这个式子其实就是官网给出的式子:

可见这里没考虑output_padding
output_padding的作用:可见nn.ConvTranspose2d的参数output_padding的作用
3.下面举例说明
https://github.com/vdumoulin/conv_arithmetic#convolution-arithmetic
1)当stride=1时,就不会进行插值操作,只会进行padding,举例说明:
卷积操作为:
蓝色为输入特征图Hin*Hin=4*4,绿色为输出特征图Hout*Hout=2*2,卷积核kernel_size=3, stride=1
根据式子Hout = floor( Hin + 2*padding - kernel_size / stride) + 1
可得padding=0

其对应的逆卷积操作为:
蓝色为输入特征图Hout*Hout=2*2,绿色为输出特征图Hin*Hin=4*4,卷积核kernel_size=3, stride=1
卷积时的padding=0
将这些值代入上面的式子Hin = (Hout - 1) * stride - 2*padding + kernel_size
果然输入Hout*Hout=2*2能得到输出Hin*Hin=4*4
变形过程为:
paddingnew = kernel_size - padding -1 = 3 -0 -1 = 2
所以可见下方的蓝色最后的大小为7*7 = Hout + 2*paddingnew = 2 + 2*2 = 6

⚠️这里可见是有padding的,为什么定义是为no padding呢?
这是因为它对应的卷积操作的padding=0
1)当stride=2时,进行插值和padding操作,举例说明:
卷积操作为:
蓝色为输入特征图Hin*Hin=5*5,绿色为输出特征图Hout*Hout=3*3,卷积核kernel_size=3, stride=2
根据式子Hout = floor( Hin + 2*padding - kernel_size / stride) + 1
可得padding=1

其对应的逆卷积操作为:
蓝色为输入特征图Hout*Hout=3*3,绿色为输出特征图Hin*Hin=5*5,卷积核kernel_size=3,stride=2
卷积时的padding=1
将这些值代入上面的式子Hin = (Hout - 1) * stride - 2*padding + kernel_size
果然输入Hout*Hout=3*3能得到输出Hin*Hin=5*5
变形操作为:
Hout_new = Hout + (stride-1) * (Hout-1) = 3 + (2-1)*(3-1) = 5
paddingnew = kernel_size - padding -1 = 3 -1 -1 = 1
所以可见下方的蓝色最后的大小为7*7 = Hout_new + 2*paddingnew = 5 + 2*1 = 7

⚠️因为这里的逆卷积对应的卷积操作的padding= 1,所以这里不是no padding,而是padding
逆卷积的详细解释ConvTranspose2d(fractionally-strided convolutions)的更多相关文章
- Elasticsearch BM25相关度算法超详细解释
Photo by Pixabay from Pexels 前言:日常在使用Elasticsearch的搜索业务中多少会出现几次 "为什么这个Doc分数要比那个要稍微低一点?".&q ...
- .htaccess语法之RewriteCond与RewriteRule指令格式详细解释
htaccess语法之RewriteCond与RewriteRule指令格式详细解释 (2012-11-09 18:09:08) 转载▼ 标签: htaccess it 分类: 网络 上文htacc ...
- cookie的详细解释
突然看到网页上中英文切换的效果,不明白怎么弄得查了查 查到了cookie 并且附有详细解释 就copy留作 以后温习 http://blog.csdn.net/xidor/article/detail ...
- tar命令的详细解释
tar命令的详细解释 标签: linuxfileoutputbashinputshell 2010-05-04 12:11 235881人阅读 评论(12) 收藏 举报 分类: linux/unix ...
- Linux学习笔记15——GDB 命令详细解释【转】
GDB 命令详细解释 Linux中包含有一个很有用的调试工具--gdb(GNU Debuger),它可以用来调试C和C++程序,功能不亚于Windows下的许多图形界面的调试工具. 和所有常用的调试工 ...
- C语言 - 结构体(struct)比特字段(:) 详细解释
结构体(struct)比特字段(:) 详细解释 本文地址: http://blog.csdn.net/caroline_wendy/article/details/26722511 结构体(struc ...
- 姿势体系结构的详细解释 -- C
我基本上总结出以下4部分: 1.问题的足迹大小. 2.字节对齐问题. 3.特别保留位0. 4.这种结构被存储在存储器中的位置. #include <stdio.h> #include &l ...
- Java - 面向对象(object oriented)计划 详细解释
面向对象(object oriented)计划 详细解释 本文地址: http://blog.csdn.net/caroline_wendy/article/details/24058107 程序包括 ...
- 设计模式 - 迭代模式(iterator pattern) Java 迭代器(Iterator) 详细解释
迭代模式(iterator pattern) Java 迭代器(Iterator) 详细解释 本文地址: http://blog.csdn.net/caroline_wendy 參考迭代器模式(ite ...
随机推荐
- kafka基础知识点
1.安装: 1.1. 前置安装要求:java + zookeeper 1.2. 下载安装包:http://mirros.cnnic.cn/apache/kafka/0.9.00/kafka_2.10- ...
- Spring Bean 生命周期测试
本文代码GitHub地址 Bean的生命周期是开始创建到销毁的过程.需要实现相关的类BeanNameAware ,DisposableBean, InitializingBean ,并注册Inst ...
- 来一波C#发送邮件
1.所用工具和资源:VS2012 在.NET Frameword类库中提供SmtpClient类(System.NET.Mail) 2.运行截图 3.具体代码实现如下: using System; ...
- python爬虫之selenium、phantomJs
图片懒加载技术 什么是图片懒加载技术 图片懒加载是一种网页优化技术.图片作为一种网络资源,在被请求时也与普通静态资源一样,将占用网络资源,而一次性将整个页面的所有图片加载完,将大大增加页面的首屏加载时 ...
- Docker 删除&清理镜像
文章首发自个人网站:https://www.exception.site/docker/docker-delete-image 本文中,您将学习 Docker 如何删除及清理镜像? 一.通过标签删除镜 ...
- 在Linux系统配置Nodejs环境的最简单步骤,部署多个thinkjs(nodejs)项目
发现一台服务器部署管理多个nodejs服务,可以采用二级域名weekly.mwcxs.top,也可以采用固定后缀www.mwcxs.top/weekly的方式,本文先从固定后缀的方式部署管理多个nod ...
- ASP.NET Core中使用GraphQL - 第二章 中间件
前文:ASP.NET Core中使用GraphQL - 第一章 Hello World 中间件 如果你熟悉ASP.NET Core的中间件,你可能会注意到之前的博客中我们已经使用了一个中间件, app ...
- 在github上搭建一个静态的个人网站
说一下大概步骤 1.创建一个新仓库 仓库名必须是你的用户名+github.io后缀 例:用户名:tom 仓库名就要是:tom.github.io (这里具体步骤可以自己百度一下) 2.创建好仓库我们该 ...
- C++11智能指针的深度理解
平时习惯使用cocos2d-x的Ref内存模式,回过头来在控制台项目中觉得c++的智能指针有点生疏,于是便重温一下.首先有请c++智能指针们登场: std::auto_ptr.std::unique_ ...
- .Net Framework项目引用.NetStandard标准库出现版本冲突解决办法
今天在工作中出现一个引用问题,害我找问题找了很久.起因是在一个Winform项目下需要引用一个.NetStandard标准库,标准库引用了System.ComponentModel.Annotatio ...