每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~

———————————————————————————

本内容来源于CDA-DSC课程内容,原内容为《第16讲 汽车金融信用违约预测模型案例》。

建立违约预测模型的过程中,变量的筛选尤为重要。需要经历多次的筛选,在课程案例中通过了随机森林进行变量的粗筛,通过WOE转化+决策树模型进行变量细筛。

一、变量粗筛——随机森林模型

与randomForest包不同之处在于,party可以处理缺失值,而这个包可以。

  1. library(party)
  2. #与randomForest包不同之处在于,party可以处理缺失值,而这个包可以
  3. set.seed(42)
  4. crf<-cforest(y~.,control = cforest_unbiased(mtry = 2, ntree = 50), data=step2_1)
  5. varimpt<-data.frame(varimp(crf))

party包中的随机森林建模函数为cforest函数,

mtry代表在每一棵树的每个节点处随机抽取mtry 个特征,通过计算每个特征蕴含的信息量,特征中选择一个最具有分类能力的特征进行节点分裂。

varimp代表重要性函数。( R语言︱决策树族——随机森林算法)

二、R语言实现WOE转化+变量细筛

R语言中有一个woe包,可以实现WOE转化的同时,通过WOE值进行y~x的决策树建立,应用决策树的重要性来进行变量细筛。

woe包需要从github中下载得到:

#library(devtools)
#install_github("riv","tomasgreif")

library(woe)
IV<-iv.mult(step2_2,"y",TRUE)   #原理是以Y作为被解释变量,其他作为解释变量,建立决策树模型
iv.plot.summary(IV)

summary(step2_3)

不能只看统计量,还要仔细的察看每个变量的取值情况。一般WOE建模数据是经过抽样的,因此可能需要多建模几次,看看不同的变量特征变化,再来进行变量细筛。

笔记+R︱风控模型中变量粗筛(随机森林party包)+细筛(woe包)的更多相关文章

  1. R语言︱机器学习模型评估方案(以随机森林算法为例)

    笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...

  2. 如何在Python中从零开始实现随机森林

    欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 决策树可能会受到高度变异的影响,使得结果对所使用的特定测试数据而言变得脆弱. 根据您的测试数据样本构建多个模型(称为套袋)可以减少这种差异,但是 ...

  3. Machine Learning笔记整理 ------ (五)决策树、随机森林

    1. 决策树 一般的,一棵决策树包含一个根结点.若干内部结点和若干叶子结点,叶子节点对应决策结果,其他每个结点对应一个属性测试,每个结点包含的样本集合根据属性测试结果被划分到子结点中,而根结点包含样本 ...

  4. # 机器学习算法总结-第八天(SKlearn中的kmeans/随机森林)

    随机森林 这篇好好看看怎么调参的 我调的最佳参数如下,准确率为0.8428671546929973,细节看上篇文章: alg = RandomForestClassifier(n_estimators ...

  5. 笔记+R︱信用风险建模中神经网络激活函数与感知器简述

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲 ...

  6. R语言︱决策树族——随机森林算法

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...

  7. 随机森林入门攻略(内含R、Python代码)

    随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获 ...

  8. paper 56 :机器学习中的算法:决策树模型组合之随机森林(Random Forest)

    周五的组会如约而至,讨论了一个比较感兴趣的话题,就是使用SVM和随机森林来训练图像,这样的目的就是 在图像特征之间建立内在的联系,这个model的训练,着实需要好好的研究一下,下面是我们需要准备的入门 ...

  9. 机器学习之Bagging与随机森林笔记

    集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能.这对“弱学习器”尤为明显,因此集成学习的很多理论研究都是针对弱学习器进行的,而基学习器有时也被直接称为弱学习器.虽然从理论上来 ...

随机推荐

  1. 《.NET 设计规范》第 7 章:异常

    第 7 章:异常 异常与各种面向对象语言集成得非常好. 异常增强了 API 的一致性. 在用返回值来报告错误时,错误处理的代码与可能会发生错误的代码距离总是很近. 更容易使错误处理的带码全局化. 错误 ...

  2. zookeeper 实现分布式锁zookeeper 使用 Curator 示例监听、分布式锁

    下载地址: http://download.csdn.net/download/ttyyadd/10239642

  3. Java8之Lambda表达式基础

    Java 8中,将会提供对lambda的支持,函数式编程FP(Functional Programming)将会得到很好地支持,而函数式编程的一个重要特点就是适合并行运算. λ:希腊字母表中排序第十一 ...

  4. BZOJ 2419: 电阻 [高斯消元 物理]

    http://www.lydsy.com/JudgeOnline/problem.php?id=2419 题意: n个点m个电阻构成一张图,求1到n的等效电阻 第一节课看一道题弃疗,于是来做这道物理题 ...

  5. 在ASP.NET MVC中使用Web API和EntityFramework构建应用程序

    最近做了一个项目技术预研:在ASP.NET MVC框架中使用Web API和EntityFramework,构建一个基础的架构,并在此基础上实现基本的CRUD应用. 以下是详细的步骤. 第一步 在数据 ...

  6. Dapper入门教程(二)——执行非查询语句

    描述 你可以从任意实现IDbConnection的类对象中调用Dapper的扩展方法"Execute".它能够执行一条命令(Command)一次或者多次,并返回受影响的行数.这个方 ...

  7. 在C#中“?”有三种用法

    在C#中“?”有三种用法. 1.可空类型修饰符(?):引用类型可以使用空引用表示一个不存在的值,而值类型通常不能表示为空,例如:string str=null;是正确的.int i=null:编译器将 ...

  8. TensorFlow实战之Softmax Regression识别手写数字

         关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...

  9. SpringBoot入门Demo

    前言:相信做java后台编程的童鞋都知道Spring家族,Spring作为我们项目中必备的框架.JavaSpringBoot号称javaEE的颠覆者,这引起了本Y的好奇,这才花费了一点时间,学习了下s ...

  10. Redis 实践2-数据结构

    alias redis-cli='/usr/local/redis/bin/redis-cli'   vi .bashrc 编辑加入  alias redis-cli='/usr/local/redi ...