笔记+R︱风控模型中变量粗筛(随机森林party包)+细筛(woe包)
每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~
———————————————————————————
本内容来源于CDA-DSC课程内容,原内容为《第16讲 汽车金融信用违约预测模型案例》。
建立违约预测模型的过程中,变量的筛选尤为重要。需要经历多次的筛选,在课程案例中通过了随机森林进行变量的粗筛,通过WOE转化+决策树模型进行变量细筛。
一、变量粗筛——随机森林模型
与randomForest包不同之处在于,party可以处理缺失值,而这个包可以。
- library(party)
- #与randomForest包不同之处在于,party可以处理缺失值,而这个包可以
- set.seed(42)
- crf<-cforest(y~.,control = cforest_unbiased(mtry = 2, ntree = 50), data=step2_1)
- varimpt<-data.frame(varimp(crf))
party包中的随机森林建模函数为cforest函数,
mtry代表在每一棵树的每个节点处随机抽取mtry 个特征,通过计算每个特征蕴含的信息量,特征中选择一个最具有分类能力的特征进行节点分裂。
varimp代表重要性函数。( R语言︱决策树族——随机森林算法)
二、R语言实现WOE转化+变量细筛
R语言中有一个woe包,可以实现WOE转化的同时,通过WOE值进行y~x的决策树建立,应用决策树的重要性来进行变量细筛。
woe包需要从github中下载得到:
#library(devtools) #install_github("riv","tomasgreif")
library(woe) IV<-iv.mult(step2_2,"y",TRUE) #原理是以Y作为被解释变量,其他作为解释变量,建立决策树模型 iv.plot.summary(IV)
summary(step2_3)
不能只看统计量,还要仔细的察看每个变量的取值情况。一般WOE建模数据是经过抽样的,因此可能需要多建模几次,看看不同的变量特征变化,再来进行变量细筛。
笔记+R︱风控模型中变量粗筛(随机森林party包)+细筛(woe包)的更多相关文章
- R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...
- 如何在Python中从零开始实现随机森林
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 决策树可能会受到高度变异的影响,使得结果对所使用的特定测试数据而言变得脆弱. 根据您的测试数据样本构建多个模型(称为套袋)可以减少这种差异,但是 ...
- Machine Learning笔记整理 ------ (五)决策树、随机森林
1. 决策树 一般的,一棵决策树包含一个根结点.若干内部结点和若干叶子结点,叶子节点对应决策结果,其他每个结点对应一个属性测试,每个结点包含的样本集合根据属性测试结果被划分到子结点中,而根结点包含样本 ...
- # 机器学习算法总结-第八天(SKlearn中的kmeans/随机森林)
随机森林 这篇好好看看怎么调参的 我调的最佳参数如下,准确率为0.8428671546929973,细节看上篇文章: alg = RandomForestClassifier(n_estimators ...
- 笔记+R︱信用风险建模中神经网络激活函数与感知器简述
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲 ...
- R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...
- 随机森林入门攻略(内含R、Python代码)
随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获 ...
- paper 56 :机器学习中的算法:决策树模型组合之随机森林(Random Forest)
周五的组会如约而至,讨论了一个比较感兴趣的话题,就是使用SVM和随机森林来训练图像,这样的目的就是 在图像特征之间建立内在的联系,这个model的训练,着实需要好好的研究一下,下面是我们需要准备的入门 ...
- 机器学习之Bagging与随机森林笔记
集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能.这对“弱学习器”尤为明显,因此集成学习的很多理论研究都是针对弱学习器进行的,而基学习器有时也被直接称为弱学习器.虽然从理论上来 ...
随机推荐
- Codeforce D. Make a Permutation!
D. Make a Permutation! time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- phpstorm中配置真正的远程调试(xdebug)
这里说的是真正的远程调试,不是本地,本地不需要安装任何php程序!!! 这里略去xdebug的安装,安装很简单可以下载源码包,动态编译进去! 环境: Dev 服务器(IP:192.168.2.100) ...
- The Go Programming Language. Notes.
Contents Tutorial Hello, World Command-Line Arguments Finding Duplicate Lines A Web Server Loose End ...
- Java多线程基础(一)
一个简单的多线程的例子: package multiThread; public class BasicThread implements Runnable{ private int countDow ...
- JDBC(一)
JDBC(Java DataBase Conectivity)Java数据库连接,是J2SE的一部分,由java.sql和javax.sql组成. package dbTest; import jav ...
- POJ 2154 Color [Polya 数论]
和上题一样,只考虑旋转等价,只不过颜色和珠子$1e9$ 一样的式子 $\sum\limits_{i=1}^n m^{gcd(i,n)}$ 然后按$gcd$分类,枚举$n$的约数 如果这个也化不出来我莫 ...
- BZOJ 1396&&2865 识别子串[后缀自动机 线段树]
Description 在这个问题中,给定一个字符串S,与一个整数K,定义S的子串T=S(i, j)是关于第K位的识别子串,满足以下两个条件: 1.i≤K≤j. 2.子串T只在S中出现过一次. 例如, ...
- DaemonSet 典型应用场景 - 每天5分钟玩转 Docker 容器技术(129)
Deployment 部署的副本 Pod 会分布在各个 Node 上,每个 Node 都可能运行好几个副本.DaemonSet 的不同之处在于:每个 Node 上最多只能运行一个副本. DaemonS ...
- Windows Server 2016-查询FSMO角色信息的三种方法
FSMO操作主机角色有五种:林范围操作主机角色有两种,分别是 架构主机角色(Schema Master)和 域命名主机角色(Domain Naming Master):及域范围操作主机角色三种,分别是 ...
- composer引用本地git做为源库
PHP使用者大多对composer是又爱又恨,爱的是composer require后,很多类库不用去下载了,恨的是网速卡成翔,虽然国内有很多道友做了镜象,但对于bower库这些都还是整体更新. 那么 ...