查找最近公共祖先(LCA)
一、问题
求有根树的任意两个节点的最近公共祖先(一般来说都是指二叉树)。最近公共祖先简称LCA(Lowest Common Ancestor)。例如,如下图一棵普通的二叉树。
    
结点3和结点4的最近公共祖先是结点2,即LCA(3,4)=2 。在此,需要注意到当两个结点在同一棵子树上的情况,如结点3和结点2的最近公共祖先为2,即 LCA(3,2)=2。同理:LCA(5,6)=4,LCA(6,10)=1。
明确了题意,咱们便来试着解决这个问题。直观的做法,可能是针对是否为二叉查找树分情况讨论,这也是一般人最先想到的思路。除此之外,还有所谓的Tarjan算法、倍增算法、以及转换为RMQ问题(求某段区间的极值)。后面这几种算法相对高级,不那么直观,但思路比较有启发性,留作以后了解一下也有裨益。
二、思路
解法一:暴力解法,在有parent指针的情况下,对两个节点依次向上回溯,直到两个节点相同,那么这个节点就是最近公共祖先。时间复杂度为O(n²)
解法二:链表的交叉,在有parent指针的情况下,对两个节点分别到根节点的路径上的节点形成两个链表,因为两个链表很大可能不一样长,然后我们可以对其中长的一个链表从开头进行裁剪,形成两个链表长度一样,然后遍历直到相等,虽说优化了一点,但本质上还是暴力破解。
解法三:借用数组和列表,在没有parent指针的情况,我们只能从根节点往下遍历,而不能进行往上回溯。所以可以借用数组或列表来保存数据,后面进行比对。和链表的交叉差不多。
解法四:不借用额外的数据结构,没有parent指针。大概思路呢就是如果两个节点分属在根节点的两边,返回根节点,如果两个节点同在左子树或右子树,递归求解。
解法五:这种解法现在不太懂,现在留作记录以后观看。其中解法四和解法五在代码中体现。
三、代码
import java.util.ArrayList;
import java.util.List; public class LCA {
public int getLCA(int a, int b) {
TreeNode<Integer> root = of(10); TreeNode<Integer> lca = getLCA2(root, new TreeNode<Integer>(a), new TreeNode<Integer>(b));
return lca == null ? -1 : lca.val;
} //=====解法四===========
// 看两个节点是否在同一侧
private TreeNode<Integer> getLCA(TreeNode<Integer> root, TreeNode<Integer> p, TreeNode<Integer> q) {
if (root == null)
return null;
if (root.equals(p) || root.equals(q))
return root; boolean is_p_on_left = cover(root.left, p);
boolean is_q_on_right = cover(root.right, q);
if (is_p_on_left == is_q_on_right) {// 在root的两端
return root;
} else if (is_p_on_left) {// 在root的左端
return getLCA(root.left, p, q);
} else {
return getLCA(root.right, p, q);
}
} // 解法五
// 很难理解 递归定义不明确 第一次看到
private TreeNode<Integer> getLCA2(TreeNode<Integer> root, TreeNode<Integer> p, TreeNode<Integer> q) {
if (root == null)
return null;
if (root.equals(p) && root.equals(q))
return root; // x是lca,或者是p(p在这一侧),或者是q(q在这一侧),或者是null(pq都不在这一侧)
TreeNode<Integer> x = getLCA2(root.left, p, q);
if (x != null && !x.equals(p) && !x.equals(q)) {// 在左子树找到了lca
return x;
} TreeNode<Integer> y = getLCA2(root.right, p, q);
if (y != null && !y.equals(p) && !y.equals(q)) {// 在右子树找到了lca
return y;
} // x:p,q,null y :q,p,null
if (x != null && y != null) {// 一边找着一个
return root;
} else if (root.equals(p) || root.equals(q)) {
return root;
} else {
return x == null ? y : x;// 有一个不为null,则返回,都为null,返回null
}
} /**
* 判断x节点是否在n所代表的子树中
*
* @param n
* @param x
* @return
*/
private boolean cover(TreeNode<Integer> n, TreeNode<Integer> x) {
if (n == null)
return false;
if (n.equals(x))
return true;
return cover(n.left, x) || cover(n.right, x);
} public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
// 发现目标节点则通过返回值标记该子树发现了某个目标结点
if (root == null || root.equals(p.val) || root.equals(q))
return root;
// 查看左子树中是否有目标结点,没有为null
TreeNode left = lowestCommonAncestor(root.left, p, q);
// 查看右子树是否有目标节点,没有为null
TreeNode right = lowestCommonAncestor(root.right, p, q);
// 都不为空,说明左右子树都有目标结点,则公共祖先就是本身
if (left != null && right != null)
return root;
// 如果发现了目标节点,则继续向上标记为该目标节点
return left == null ? right : left;
} static TreeNode<Integer> of(int n) {
List<TreeNode<Integer>> list = new ArrayList<TreeNode<Integer>>();
for (int i = 0; i < n; i++) {
list.add(new TreeNode<Integer>(i + 1));
}
for (int i = 0; i < n; i++) {
TreeNode<Integer> parent = list.get(i);
if (i * 2 + 1 < n) {
TreeNode<Integer> left = list.get(i * 2 + 1);
parent.left = left;
left.parent = parent;
} else
break;
if (i * 2 + 2 < n) {
TreeNode<Integer> right = list.get(i * 2 + 2);
parent.right = right;
right.parent = parent;
}
}
return list.get(0);
} private static class TreeNode<T> {
public T val;
public TreeNode<T> left = null;
public TreeNode<T> right = null;
TreeNode<T> parent; public TreeNode(T val) {
this.val = val;
} @Override
public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false; TreeNode<?> treeNode = (TreeNode<?>) o; return val != null ? val.equals(treeNode.val) : treeNode.val == null;
} @Override
public int hashCode() {
return val != null ? val.hashCode() : 0;
}
}
}
查找最近公共祖先(LCA)的更多相关文章
- 最近公共祖先LCA(Tarjan算法)的思考和算法实现
		
LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...
 - 算法详解之最近公共祖先(LCA)
		
若图片出锅请转至here 概念 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节 ...
 - 最近公共祖先LCA(Tarjan算法)的思考和算法实现——转载自Vendetta Blogs
		
LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...
 - Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)
		
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...
 - POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
		
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
 - POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
		
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
 - [模板] 最近公共祖先/lca
		
简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...
 - 【lhyaaa】最近公共祖先LCA——倍增!!!
		
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...
 - 【Leetcode】查找二叉树中任意结点的最近公共祖先(LCA问题)
		
寻找最近公共祖先,示例如下: 1 / \ 2 3 / \ / \ 4 5 6 7 / \ ...
 
随机推荐
- Masonry中的mas_makeConstraints方法
			
2018年04月12日 10:10:54 阅读数:138 一.简单介绍 我们一般来说会这样进行使用 [view mas_makeConstraints:^(MASConstraintMaker *ma ...
 - Cassadra & presto 集群部署
			
四台服务器部署cassandra集群 和 presto搜索引擎 及代码演示: 还有很多细节没有补充,有问题和疑问的地方 咋们一起探讨哇!1.创建用户 使用root用户登录应用服务器,执行以下操作 ...
 - session会话管理
			
session会话和cookie一起被称为会话跟踪技术,主要通过保存在服务器端的session数据和客户端浏览器的cookie数据共同完成用户访问服务器的足迹记录. 1. 什么是会话 会话sessio ...
 - poj-3522 最小生成树
			
Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...
 - Java开源生鲜电商平台-异常模块的设计与架构(源码可下载)
			
Java开源生鲜电商平台-异常模块的设计与架构(源码可下载) 说明:任何一个软件系统都会出现各式各样的异常与错误,我们需要根据异常的情况进行捕获与分析,改善自己的代码,让其更加的稳定的,快速的运行,那 ...
 - BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法
			
BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...
 - jdk源码剖析四:JDK1.7升级1.8 HashMap原理的变化
			
一.hashMap数据结构 如上图所示,JDK7之前hashmap又叫散列链表:基于一个数组以及多个链表的实现,hash值冲突的时候,就将对应节点以链表的形式存储. JDK8中,当同一个hash值(T ...
 - Python 魔术方法笔记
			
魔术方法总是被__包围, 如__init__ , __len__都是常见的魔术方法,这里主要写一下我遇到的一些魔术方法 setitem 对某个索引值赋值时 即可以进行赋值操作,如 def __seti ...
 - css3新增动画
			
1.transiition过渡:样式改变就会执行transition (1)格式:transiition:1s width linear,2s 1s height; (2)参数: transition ...
 - 《HelloGitHub》第 35 期
			
<HelloGitHub>第 35 期 兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 GitHub 上有趣.入门级的开源项目. 这是一个面向编程新手.热爱编程. ...