Netflix的推荐和个性化功能向来精准,前不久,他们公布了自己在这方面的系统架构。

3月27日,Netflix的工程师Xavier AmatrainJustin Basilico在官方博客发布文章,介绍了自己的个性化和推荐系统架构。文章开头,他们指出:

要开发出这样的一个软件架构,能够处理海量现有数据、响应用户交互,还要易于尝试新的推荐方法,这可不一点都不容易。

接下来,文章贴出了他们的系统框架图,其中的主要组件包括多种机器学习算法。

他们这样解释其中的组件和处理过程:

对于数据,最简单的方法是存下来,留作后续离线处理,这就是我们用来管理离线作业(Offline jobs)的部分架构。计算可以以离线、接近在线或是在线方式完成。在线计算(Online computation)能更快地响应最近的事件和用户交互,但必须实时完成。这会限制使用算法的复杂性和处理的数据量。离线计算(Offline computation)对于数据数量和算法复杂度限制更少,因为它以批量方式完成,没有很强的时间要求。不过,由于没有及时加入最新的数据,所以很容易过时。个性化架构的关键问题,就是如何以无缝方式结合、管理在线和离线计算过程。接近在线计算(Nearline
computation)介于两种方法之间,可以执行类似于在线计算的方法,但又不必以实时方式完成。模型训练(Model training)是另一种计算,使用现有数据来产生模型,便于以后在对实际结果计算中使用。另一块架构是如何使用事件和数据分发系统(Event and Data Distribution)处理不同类型的数据和事件。与之相关的问题,是如何组合在离线、接近在线和在线之间跨越的不同的信号和模型(Signals and Models)。最后,需要找出如何组合推荐结果(Recommendation Results),让其对用户有意义。

接下来,文章分析了在线、接近在线和离线计算。

对于在线计算,相关组件需要满足SLA对可用性和响应时间的要求,而且纯粹的在线计算在某型情形下可能无法满足SLA,因此,快速的备用方案就很重要,比如返回预先计算好的结果等。在线计算还需要不同的数据源确保在线可用,这需要额外的基础设施。

离线计算在算法上可相对灵活,工程方面的需求也简单。客户端的SLA响应时间要求也不高。在部署新算法到生产环境时,对于性能调优的需求也不高。Netflix利用这种灵活性来完成快速实验:如果某个新的实验算法执行较慢,他们会部署更多Amazon EC2实例来达成吞吐处理目标,而不是花费宝贵的工程师时间去优化性能,因为业务价值可能不是很高。

接近在线计算与在线计算执行方式相同,但计算结果不是马上提供,而是暂时存储起来,使其具备异步性。接近在线计算的完成是为了响应用户事件,这样系统在请求之间响应速度更快。这样一来,针对每个事件就有可能完成更复杂的处理。增量学习算法很适合应用在接近在线计算中。

不管什么情况,选择在线、接近在线、还是离线处理,这都不是非此即彼的决策。所有的方式都可以、而且应该结合使用。 …… 即使是建模部分也可以用在线和离线的混合方式完成。这可能不适合传统的监督分类法(supervised classification)应用,因为分类器必须从有标记的数据中批量培训,而且只能以在线方式使用,对新输入分类。不过,诸如矩阵因子分解这样的方法更适合混合离线和在线建模方法:有些因子可以预先以离线方式计算,有些因子可以实时更新,创建更新的结果。其他诸如集群处理这样的非监督方法,也可以对集群中心进行离线计算,对集群节点进行在线作业。这些例子说明:模型训练可以分解为大规模和复杂的全局模型训练,以及轻量级的用户指定模型训练或更新阶段,以在线方式完成。

对于离线作业(Offline jobs),主要用来运行个性化机器学习算法。这些作业会定期执行,而且不必与结果的请求和展示同步。主要有两种任务这样处理:模型训练和中间与最终结果批量计算(batch computation of intermediate or final results)。不过,他们也有一些学习算法是以在线增量方式完成的。

这两种任务都需要改善数据,通常是由数据库查询完成。由于这些查询要操作大量数据,以分布式方式完成更方便,因此通过Hadoop或是Hive、Pig作业就是自然而然的事情。一旦查询完成,就需要某种机制发布产生的数据。对于这样的机制,Netflix有如下需求:

  • 可以通知订阅者查询完成。
  • 支持不同存储方式(不只是HDFS,还有S3或是Cassandra等等)
  • 应该透明处理错误,允许监控和报警。

Netflix使用内部的工具Hermes完成这些功能,它将数据以接近实时的方式交付给订阅者,在某些方面接近Apache Kafka,但它不是消息/事件队列系统。

无论是离线还是在线计算,都需要处理三种输入:模型、数据和信号。模型是以离线方式训练完成的参数文件,数据是已完成处理的信息,存在某种数据库中。在Netflix,信号是指输入到算法中的新鲜信息。这些数据来自实时服务,可用其产生用户相关数据。

对于事件和数据分发,Netflix会从多种设备和应用中收集尽可能多的用户事件,并将其集中起来为算法提供基础数据。他们区分了数据和事件。事件是对时间敏感的信息,需要尽快处理。事件会路由、触发后续行动或流程。而数据需要处理和存储,便于以后使用,延迟不是重要,重要的是信息质量和数量。有些用户事件也会被作为数据处理。

Netflix使用内部框架Manhattan处理接近实时的事件流。该分布式计算系统是推荐算法架构的中心。它类似Twitter的Storm,但是用处不同,而且响应不同的内部需求。数据流主要通过Chukwa,输入到Hadoop,进行处理的初步阶段。此后使用Hermes作为发布-订阅机制。

Netflix使用Cassandra、EVCache和MySQL存储离线和中间结果。它们各有利弊。MySQL存储结构化关系数据,但会面临分布式环境中的扩展性问题。当需要大量写操作时,他们使用EVCache更合适。关键问题在于,如何满足查询复杂度、读写延迟、事务一致性等彼此冲突的需求,要对于各种情况到达某个最优点。

在总结中,他们指出:

我们需要具备使用复杂机器学习算法的能力,这些算法要可以适应高度复杂性,可以处理大量数据。我们还要能够提供灵活、敏捷创新的架构,新的方法可以很容易在其基础上开发和插入。而且,我们需要我们的推荐结果足够新,能快速响应新的数据和用户行为。找到这些要求之间恰当的平衡并不容易,需要深思熟虑的需求分析,细心的技术选择,战略性的推荐算法分解,最终才能为客户达成最佳的结果。

Netflix公布个性化和推荐系统架构的更多相关文章

  1. 推荐系统架构-(附ppt&代码)

    Part1.乐视网视频推荐系统 推荐系统:和传统的推荐系统架构无异(基础建模+规则) 数据模块特点:用户反馈服务数据->kv 缓存->log存储 行为日志->解析/聚合->se ...

  2. 全文搜索(A-4)-推荐系统架构

    推荐系统向用户推荐物品有三种情况. 推荐和用户已表示喜欢的物品相似的物品. 推荐和用户有相似偏好的用户喜欢的物品. 推荐包含用户偏好特征的物品.

  3. AI 学习路线

    [导读] 本文由知名开源平台,AI技术平台以及领域专家:Datawhale,ApacheCN,AI有道和黄海广博士联合整理贡献,内容涵盖AI入门基础知识.数据分析挖掘.机器学习.深度学习.强化学习.前 ...

  4. 京东架构师的showtime京东个性化推荐系统实战

    推荐系统核心任务是排序,从线上服务角度看,就是将数据从给定集合中数据选择出来,选出后根据一定规则策略方法进行排序. 线上服务要根据一定规则进行架构设计,架构设计是什么?每一次权衡取舍都是设计,设计需要 ...

  5. 转:netflix推荐系统竞赛

    原文链接:Netflix recommendations: beyond the 5 stars (Part 1), (Part 2) 原文作者:Xavier Amatriain and Justin ...

  6. Netflix推荐系统:从评分预测到消费者法则

    http://in.sdo.com/?p=11 原文链接:Netflix recommendations: beyond the 5 stars (Part 1), (Part 2) 原文作者:Xav ...

  7. 基于Neo4j的个性化Pagerank算法文章推荐系统实践

    新版的Neo4j图形算法库(algo)中增加了个性化Pagerank的支持,我一直想找个有意思的应用来验证一下此算法效果.最近我看Peter Lofgren的一篇论文<高效个性化Pagerank ...

  8. Netflix工程总监眼中的分类算法:深度学习优先级最低

    Netflix工程总监眼中的分类算法:深度学习优先级最低 摘要:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树 ...

  9. 用Hadoop构建电影推荐系统

    转自:http://blog.fens.me/hadoop-mapreduce-recommend/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, ...

随机推荐

  1. Android开发艺术探索——第二章:IPC机制(中)

    Android开发艺术探索--第二章:IPC机制(中) 好的,我们继续来了解IPC机制,在上篇我们可能就是把理论的知识写完了,然后现在基本上是可以实战了. 一.Android中的IPC方式 本节我们开 ...

  2. PHP Ajax JavaScript 实现 无刷新附件上传

    普通表单 前端页面 后台处理 带有文件的表单 刷新方式 前端界面 后台页面 无刷新方式 大文件上传 POST极值 upload极值 上传细节 前端页面 后台处理 总结 对一个网站而言,有一个基本的不可 ...

  3. Android捕获全局异常

    Android捕获全局异常 程序避免不了出现bug,导致程序崩溃,为了尽量不影响用户体验,可以全局捕获异常 效果图 异常捕获处理前 异常捕获处理后(将程序重新启动) 捕获异常的工具类 package ...

  4. 【Unity Shader】2D动态云彩

    写在前面 赶在年前写一篇文章.之前翻看2015年的SIGGRAPH Course(关于渲染的可以去selfshadow的博客里找到,很全)的时候看到了关于体积云的渲染.这个课程讲述了开发者为游戏< ...

  5. BASH如何获得某个目录下的某类文件的文件名

    假设某个目录下有一堆以jpeg为后缀的文件名,我们需要在另一个目录中获得他们的文件名,并输出. 可以联合使用ls,awk,sed等命令来完成. 方法一: 使用ls列出目录下以.jpeg为结尾的文件,然 ...

  6. shell test和find命令实例解析

    shell test和find命令实例解析 下面以\build\core\product.mk相关部分来学习 define _find-android-products-files $(shell t ...

  7. <<精通iOS开发>>第14章例子代码小缺陷的修复

    大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请多提意见,如果觉得不错请多多支持点赞.谢谢! hopy ;) 首先推荐大家看这本书,整本书逻辑非常清晰,代码如何从无到有,到 ...

  8. SpringMVC系列之(一) 入门实例

    Spring MVC是非常优秀的MVC框架,由其是在3.0版本发布后,现在有越来越多的团队选择了Spring3 MVC了.Spring MVC结构简单,应了那句话简单就是美,而且他强大不失灵活,性能也 ...

  9. Dynamics CRM 2013 SP1 客户表单界面上联系人subgrid上的添加现有联系人功能缺失

    CRM2013打了SP1的同学会发现一个问题,客户关联联系人的1:N关系,在表单subgrid中添加联系人时,只能新建而无法添加现有联系人,而这个现象在之前的版本中是没有的. 我们通过工具ribbon ...

  10. 为何写flash的时候要地址左移一位?

    代码一: #define Writeflash(addr,dat) *((volatile INT16U *)(addr<<1))=(INT16U)dat #define Readflas ...