Netflix公布个性化和推荐系统架构
Netflix的推荐和个性化功能向来精准,前不久,他们公布了自己在这方面的系统架构。
3月27日,Netflix的工程师Xavier Amatrain和Justin Basilico在官方博客发布文章,介绍了自己的个性化和推荐系统架构。文章开头,他们指出:
要开发出这样的一个软件架构,能够处理海量现有数据、响应用户交互,还要易于尝试新的推荐方法,这可不一点都不容易。
接下来,文章贴出了他们的系统框架图,其中的主要组件包括多种机器学习算法。
他们这样解释其中的组件和处理过程:
对于数据,最简单的方法是存下来,留作后续离线处理,这就是我们用来管理离线作业(Offline jobs)的部分架构。计算可以以离线、接近在线或是在线方式完成。在线计算(Online computation)能更快地响应最近的事件和用户交互,但必须实时完成。这会限制使用算法的复杂性和处理的数据量。离线计算(Offline computation)对于数据数量和算法复杂度限制更少,因为它以批量方式完成,没有很强的时间要求。不过,由于没有及时加入最新的数据,所以很容易过时。个性化架构的关键问题,就是如何以无缝方式结合、管理在线和离线计算过程。接近在线计算(Nearline
computation)介于两种方法之间,可以执行类似于在线计算的方法,但又不必以实时方式完成。模型训练(Model training)是另一种计算,使用现有数据来产生模型,便于以后在对实际结果计算中使用。另一块架构是如何使用事件和数据分发系统(Event and Data Distribution)处理不同类型的数据和事件。与之相关的问题,是如何组合在离线、接近在线和在线之间跨越的不同的信号和模型(Signals and Models)。最后,需要找出如何组合推荐结果(Recommendation Results),让其对用户有意义。
接下来,文章分析了在线、接近在线和离线计算。
对于在线计算,相关组件需要满足SLA对可用性和响应时间的要求,而且纯粹的在线计算在某型情形下可能无法满足SLA,因此,快速的备用方案就很重要,比如返回预先计算好的结果等。在线计算还需要不同的数据源确保在线可用,这需要额外的基础设施。
离线计算在算法上可相对灵活,工程方面的需求也简单。客户端的SLA响应时间要求也不高。在部署新算法到生产环境时,对于性能调优的需求也不高。Netflix利用这种灵活性来完成快速实验:如果某个新的实验算法执行较慢,他们会部署更多Amazon EC2实例来达成吞吐处理目标,而不是花费宝贵的工程师时间去优化性能,因为业务价值可能不是很高。
接近在线计算与在线计算执行方式相同,但计算结果不是马上提供,而是暂时存储起来,使其具备异步性。接近在线计算的完成是为了响应用户事件,这样系统在请求之间响应速度更快。这样一来,针对每个事件就有可能完成更复杂的处理。增量学习算法很适合应用在接近在线计算中。
不管什么情况,选择在线、接近在线、还是离线处理,这都不是非此即彼的决策。所有的方式都可以、而且应该结合使用。 …… 即使是建模部分也可以用在线和离线的混合方式完成。这可能不适合传统的监督分类法(supervised classification)应用,因为分类器必须从有标记的数据中批量培训,而且只能以在线方式使用,对新输入分类。不过,诸如矩阵因子分解这样的方法更适合混合离线和在线建模方法:有些因子可以预先以离线方式计算,有些因子可以实时更新,创建更新的结果。其他诸如集群处理这样的非监督方法,也可以对集群中心进行离线计算,对集群节点进行在线作业。这些例子说明:模型训练可以分解为大规模和复杂的全局模型训练,以及轻量级的用户指定模型训练或更新阶段,以在线方式完成。
对于离线作业(Offline jobs),主要用来运行个性化机器学习算法。这些作业会定期执行,而且不必与结果的请求和展示同步。主要有两种任务这样处理:模型训练和中间与最终结果批量计算(batch computation of intermediate or final results)。不过,他们也有一些学习算法是以在线增量方式完成的。
这两种任务都需要改善数据,通常是由数据库查询完成。由于这些查询要操作大量数据,以分布式方式完成更方便,因此通过Hadoop或是Hive、Pig作业就是自然而然的事情。一旦查询完成,就需要某种机制发布产生的数据。对于这样的机制,Netflix有如下需求:
- 可以通知订阅者查询完成。
- 支持不同存储方式(不只是HDFS,还有S3或是Cassandra等等)
- 应该透明处理错误,允许监控和报警。
Netflix使用内部的工具Hermes完成这些功能,它将数据以接近实时的方式交付给订阅者,在某些方面接近Apache Kafka,但它不是消息/事件队列系统。
无论是离线还是在线计算,都需要处理三种输入:模型、数据和信号。模型是以离线方式训练完成的参数文件,数据是已完成处理的信息,存在某种数据库中。在Netflix,信号是指输入到算法中的新鲜信息。这些数据来自实时服务,可用其产生用户相关数据。
对于事件和数据分发,Netflix会从多种设备和应用中收集尽可能多的用户事件,并将其集中起来为算法提供基础数据。他们区分了数据和事件。事件是对时间敏感的信息,需要尽快处理。事件会路由、触发后续行动或流程。而数据需要处理和存储,便于以后使用,延迟不是重要,重要的是信息质量和数量。有些用户事件也会被作为数据处理。
Netflix使用内部框架Manhattan处理接近实时的事件流。该分布式计算系统是推荐算法架构的中心。它类似Twitter的Storm,但是用处不同,而且响应不同的内部需求。数据流主要通过Chukwa,输入到Hadoop,进行处理的初步阶段。此后使用Hermes作为发布-订阅机制。
Netflix使用Cassandra、EVCache和MySQL存储离线和中间结果。它们各有利弊。MySQL存储结构化关系数据,但会面临分布式环境中的扩展性问题。当需要大量写操作时,他们使用EVCache更合适。关键问题在于,如何满足查询复杂度、读写延迟、事务一致性等彼此冲突的需求,要对于各种情况到达某个最优点。
在总结中,他们指出:
我们需要具备使用复杂机器学习算法的能力,这些算法要可以适应高度复杂性,可以处理大量数据。我们还要能够提供灵活、敏捷创新的架构,新的方法可以很容易在其基础上开发和插入。而且,我们需要我们的推荐结果足够新,能快速响应新的数据和用户行为。找到这些要求之间恰当的平衡并不容易,需要深思熟虑的需求分析,细心的技术选择,战略性的推荐算法分解,最终才能为客户达成最佳的结果。
Netflix公布个性化和推荐系统架构的更多相关文章
- 推荐系统架构-(附ppt&代码)
Part1.乐视网视频推荐系统 推荐系统:和传统的推荐系统架构无异(基础建模+规则) 数据模块特点:用户反馈服务数据->kv 缓存->log存储 行为日志->解析/聚合->se ...
- 全文搜索(A-4)-推荐系统架构
推荐系统向用户推荐物品有三种情况. 推荐和用户已表示喜欢的物品相似的物品. 推荐和用户有相似偏好的用户喜欢的物品. 推荐包含用户偏好特征的物品.
- AI 学习路线
[导读] 本文由知名开源平台,AI技术平台以及领域专家:Datawhale,ApacheCN,AI有道和黄海广博士联合整理贡献,内容涵盖AI入门基础知识.数据分析挖掘.机器学习.深度学习.强化学习.前 ...
- 京东架构师的showtime京东个性化推荐系统实战
推荐系统核心任务是排序,从线上服务角度看,就是将数据从给定集合中数据选择出来,选出后根据一定规则策略方法进行排序. 线上服务要根据一定规则进行架构设计,架构设计是什么?每一次权衡取舍都是设计,设计需要 ...
- 转:netflix推荐系统竞赛
原文链接:Netflix recommendations: beyond the 5 stars (Part 1), (Part 2) 原文作者:Xavier Amatriain and Justin ...
- Netflix推荐系统:从评分预测到消费者法则
http://in.sdo.com/?p=11 原文链接:Netflix recommendations: beyond the 5 stars (Part 1), (Part 2) 原文作者:Xav ...
- 基于Neo4j的个性化Pagerank算法文章推荐系统实践
新版的Neo4j图形算法库(algo)中增加了个性化Pagerank的支持,我一直想找个有意思的应用来验证一下此算法效果.最近我看Peter Lofgren的一篇论文<高效个性化Pagerank ...
- Netflix工程总监眼中的分类算法:深度学习优先级最低
Netflix工程总监眼中的分类算法:深度学习优先级最低 摘要:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树 ...
- 用Hadoop构建电影推荐系统
转自:http://blog.fens.me/hadoop-mapreduce-recommend/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, ...
随机推荐
- 在Ubuntu12.04上安装图形化配置与window共享的samba服务器
1.安装samba图形化配置界面 sudo apt-get install system-config-samba 2.启动图形化配置界面 3.添加用户,最好是要用adduser命令去添加 具体配置可 ...
- 剑指Offer——知识点储备-网络基础
剑指Offer--知识点储备-网络基础 计算机网络 http和https的区别 (1)http是http协议运行在tcp之上,所传输的内容都是明文,客户端和服务器端都无法验证对方的身份. (2)htt ...
- Android图表库MPAndroidChart(七)—饼状图可以再简单一点
Android图表库MPAndroidChart(七)-饼状图可以再简单一点 接上文,今天实现的是用的很多的,作用在统计上的饼状图,我们看下今天的效果 这个效果,我们实现,和之前一样的套路,我先来说下 ...
- Dynamics CRM The difference between UserId and InitiatingUserId in Plugin
对于这两者的不同,MSDN的解释如下 • IExecutionContext.UserId Property: Gets the global unique identifier of the sys ...
- Cartographer资料分享
中文资料稍后补充 Introducing Cartographer By Tully Foote on October 5, 2016 10:11 AM From Damon Kohler, Wolf ...
- XML之DOM解析模型
<?xml version= "1.0" encoding = "UTF-8"> <articles> <article cate ...
- 1.0、Android Studio管理你的项目
项目概览 Android Studio中的项目包含了开发一个app的工作环境所需要的一切.从代码,到资源,到测试到构建配置.当你创建一个新的项目的时候,Android Studio为所有的文件创建了必 ...
- Android初级教程通过简要分析“土司”源码,来自实现定义土司理论探讨
由于系统自带的土司瞬间即逝,而且非常难看.因此我们就希望自定义自己的土司风格.有些实例就是基于自定义土司完成的,例如金山卫士的火箭发射,基本原理就是个土司.但是在做出自己的土司风格之前,还是要简要分析 ...
- Android的ToggleButton和Switch以及AnalogColok和DigitalColok的用法-android学习之旅(二十)
ToggleButton 和Switch简介 ToggleButton 和Switch都是继承了Button,所以他们的属性设置和Button差不多. 分别支持的属性 ToggleButton 的属性 ...
- Linux之mailx的使用
mailx是UNIX系统上用来处理邮件的工具,使用它可以发送,读取邮件.下面看看如何使用它来发送邮件. 发送格式 mailx -s subject user@xxx.com < message_ ...