http://blog.csdn.net/pipisorry/article/details/48791403

numpy矩阵简介

NumPy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素。虽然它们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中NumPy函数库中的matrix与MATLAB中matrices等价。

numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中。

关于numpy中矩阵和二维数组的取舍

matrix是array的分支,matrix和array在很多时候都是通用的,但官方建议如果两个可以通用,那就选择array,因为array更灵活,速度更快,很多人把二维的array也翻译成矩阵。
matrix的优势就是相对简单的运算符号,如矩阵相乘用符号*,但是array相乘得用方法.dot()。

Note: array * mat也是矩阵相乘,而不是点乘。

array的优势就是不仅仅表示二维,还能表示3、4、5...维,而且在大部分Python程序里,array也是更常用的。

Note:

1. numpy中二维数组不支持求逆运算(给gui),但可以使用scripy中的linalg.inv()函数求逆。

2. lz建议使用二维ndarray代替matrix,结合使用scripy.linalg库可以实现全部矩阵运算。[Scipy教程 - 线性代数库linalg]

皮皮Blog

Matrix objects矩阵对象

创建示例

np.matrix

>>> a = np.matrix(’1 2; 3 4’)
>>> print a
[[1 2]
[3 4]]

>>> np.matrix([[1, 2], [3, 4]])
matrix([[1, 2],
[3, 4]])

Note:

1. class numpy.matrix(data,dtype,copy):返回一个矩阵,其中data为ndarray对象或者字符形式;dtype:为data的type;copy:为bool类型。

2. 矩阵的换行必须是用分号(;)隔开,内部数据必须为字符串形式(‘ ’),矩阵的元素之间必须以空格隔开。

3. 矩阵中的data可以为数组对象。

np.asmatrix

>>> x = np.array([[1, 2], [3, 4]])
>>> m = np.asmatrix(x)
>>> x[0,0] = 5
>>> m
matrix([[5, 2],
[3, 4]])

矩阵对象属性Attribute

矩阵对象方法Methods

[numpy-ref-1.8.1 - 1.6.2 Matrix objects p120]

Matrix矩阵对象方法使用示例

>>> a = np.asmatrix('0 2 7; 3 4 8; 5 0 9')
>>> a.all()
False
>>> a.all(axis=0)
matrix([[False, False,  True]], dtype=bool)
>>> a.all(axis=1)
matrix([[False],
[ True],
[False]], dtype=bool)

ü  Astype方法
>>> a.astype(float)
matrix([[ 12.,   3.,   5.],
[ 32.,  23.,   9.],
[ 10., -14.,  78.]])

ü  Argsort方法
>>> a=np.matrix('12 3 5; 32 23 9; 10 -14 78')
>>> a.argsort()
matrix([[1, 2, 0],
[2, 1, 0],
[1, 0, 2]])

ü  Clip方法
>>> a
matrix([[ 12,   3,   5],
[ 32,  23,   9],
[ 10, -14,  78]])
>>> a.clip(12,32)
matrix([[12, 12, 12],
[32, 23, 12],
[12, 12, 32]])

ü  Cumprod方法
>>> a.cumprod(axis=1)
matrix([[    12,     36,    180],
[    32,    736,   6624],
[    10,   -140, -10920]])

ü  Cumsum方法
>>> a.cumsum(axis=1)
matrix([[12, 15, 20],
[32, 55, 64],
[10, -4, 74]])

ü  Tolist方法
>>> b.tolist()
[[12, 3, 5], [32, 23, 9], [10, -14, 78]]

ü  Tofile方法
>>> b.tofile('d:\\b.txt')

ü  compress()方法
>>> from numpy import *
>>> a = array([10, 20, 30, 40])
>>> condition = (a > 15) & (a < 35)
>>> condition
array([False, True, True, False], dtype=bool)
>>> a.compress(condition)
array([20, 30])
>>> a[condition]                                      # same effect
array([20, 30])
>>> compress(a >= 30, a)                              # this form a
so exists
array([30, 40])
>>> b = array([[10,20,30],[40,50,60]])
>>> b.compress(b.ravel() >= 22)
array([30, 40, 50, 60])
>>> x = array([3,1,2])
>>> y = array([50, 101])
>>> b.compress(x >= 2, axis=1)                       # illustrates
the use of the axis keyword
array([[10, 30],
[40, 60]])
>>> b.compress(y >= 100, axis=0)
array([[40, 50, 60]])

皮皮Blog

The Matrix class numpy矩阵类

建立矩阵

Note: numpy.mat(data, dtype=None)   Interpret the input as a matrix.
Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to matrix(data, copy=False).

[numpy-ref-1.8.1 - 3.1.7 The Matrix class p484]

皮皮Blog

Matrix library矩阵库(numpy.matlib)

This module contains all functions in the numpy namespace, with the following replacement functions that return matrices instead of ndarrays.

Functions that are also in the numpy namespace and return matrices

Replacement functions in matlib

[numpy-ref-1.8.1 - 3.21 Matrix library p940]

from:http://blog.csdn.net/pipisorry/article/details/48791403

numpy教程:矩阵matrix及其运算的更多相关文章

  1. [转]Numpy中矩阵对象(matrix)

    numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中. class numpy.matr ...

  2. [转]numpy中的matrix矩阵处理

    今天看文档发现numpy并不推荐使用matrix类型.主要是因为array才是numpy的标准类型,并且基本上各种函数都有队array类型的处理,而matrix只是一部分支持而已. 这个转载还是先放着 ...

  3. numpy中的matrix矩阵处理

    numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中. class numpy.matr ...

  4. numpy教程

    [转]CS231n课程笔记翻译:Python Numpy教程 原文链接:https://zhuanlan.zhihu.com/p/20878530 译者注:本文智能单元首发,翻译自斯坦福CS231n课 ...

  5. 转:Numpy教程

    因为用到theano写函数的时候饱受数据结构困扰 于是上网找了一篇numpy教程(theano的数据类型是基于numpy的) 原文排版更好,阅读体验更佳: http://phddreamer.blog ...

  6. Python numpy中矩阵的用法总结

    关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...

  7. numpy中的matrix与array的区别

    Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array ...

  8. Python 机器学习库 NumPy 教程

    0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy ...

  9. Numpy入门(二):Numpy数组索引切片和运算

    在Numpy中建立了数组或者矩阵后,需要访问数组里的成员,改变元素,并对数组进行切分和计算. 索引和切片 Numpy数组的访问模式和python中的list相似,在多维的数组中使用, 进行区分: 在p ...

随机推荐

  1. E1

    en表"使怎么样" engage 吸引,从事,订婚    be engaged in doing sth.  忙于 endure  忍耐,忍受 enforce 强制执行 enrol ...

  2. MVC和MTV模式

    著名的MVC模式:所谓MVC就是把web应用分为模型(M),控制器(C),视图(V)三层:他们之间以一种插件似的,松耦合的方式连接在一起. 模型负责业务对象与数据库的对象(ORM),视图负责与用户的交 ...

  3. Jmeter(十七)_驱动浏览器做GUI测试

    jmeter不光可以完成性能测试.接口测试,现在也可以依靠WebDriver来完成GUI的功能自动化测试了,是不是很神奇? 1:下载JMeterPlugins-WebDriver-1.3.1.zip, ...

  4. OC基础之可循环滚动并突出中间图片,并且可点击

    前两天一哥们儿让我帮他写一下:可循环滚动并突出中间图片,并且可点击的一种滑动视图的效果,今天放在这里给大家展示一下,具体文字代码中都有注解,代码还有待完善,不喜勿喷,转载请注明,下载请点星,谢谢~ - ...

  5. MacOS获取辅助功能权限控制鼠标点击事件

    昨晚玩一个模拟经营的游戏,由于升级太慢我就不停的种树卖树来换取经验值.不过重复点击10几分钟后,实在受不了.网上本来准备找个鼠标自动点击的软件用用.结果没找到趁手的.如是自己写了个. 自己设置需要点击 ...

  6. 快速了解 Robot Operating System(ROS) 机器人操作系统

     http://www.ros.org/ 关于ROS About ROS http://www.ros.org/about-ros/ 机器人操作系统(ROS)是用于编写机器人软件的灵活框架.目的在简化 ...

  7. ROS(indigo) turtlebot2 + android一些有趣应用

    ROS和Android配合使用非常有趣,这里推荐,ROSClinet,使用rosbridge让android和ROS通信: 具体参考奥斯卡的个人剧场:http://xxhong.net/ turtle ...

  8. Django 是如何实现用户登录和登出机制的(默认版本-数据库版本)

    Django session 字典,保存到数据库的时候是要先序列化的(session.encode方法), 读取的时候反序列化(session.decode),这样比较安全. 一 settings.p ...

  9. 使用spark ml pipeline进行机器学习

    一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的 ...

  10. activiti节点跳转

    分享牛原创(尊重原创 转载对的时候第一行请注明,转载出处来自分享牛http://blog.csdn.net/qq_30739519) activiti使用的时候,通常需要跟业务紧密的结合在一起,有些业 ...