LOJ #6051. 「雅礼集训 2017 Day11」PATH
完了感觉最近留了好多坑的说,这题也是模模糊糊地会一点
首先我们发现题目要求的是单调不上升的序列个数,那么一个套路就是用值减去下标
然后考虑连续位置的限制,这个我们做一个置换然后尽量向后取
这样拿值和位置卷积就变成了合法方案数的分子\(\times\)总方案数的分母?
感觉策不太懂啊,QQ上加了一个dalao问下细节,具体的到时候来填吧
先把CODE放了
#include<cstdio>
#include<cctype>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
const int N=500005,mod=1004535809;
int n,m,len,lim,a[N],b[N],fact[N],F[N<<3],G[N<<3],ans;
class FileInputOutput
{
private:
static const int S=1<<21;
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
char Fin[S],*A,*B;
public:
Tp inline void read(T& x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
#undef tc
}File;
inline void maxer(int& x,CI y)
{
if (y>x) x=y;
}
inline int quick_pow(int x,int p=mod-2,int mul=1)
{
for (;p;p>>=1,x=1LL*x*x%mod) if (p&1) mul=1LL*mul*x%mod; return mul;
}
class Poly_solver
{
private:
int rev[N<<3],p;
inline void swap(int& x,int& y)
{
int t=x; x=y; y=t;
}
inline int sum(CI a,CI b)
{
int t=a+b; return t>=mod?t-mod:t;
}
inline int sub(CI a,CI b)
{
int t=a-b; return t<0?t+mod:t;
}
public:
inline void init(CI n)
{
for (lim=1,p=0;lim<=n;lim<<=1,++p);
for (RI i=0;i<lim;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<p-1);
}
inline void NTT(int *f,CI opt)
{
RI i; for (i=0;i<lim;++i) if (i<rev[i]) swap(f[i],f[rev[i]]);
for (i=1;i<lim;i<<=1)
{
int m=i<<1,D=quick_pow(3,~opt?(mod-1)/m:mod-1-(mod-1)/m);
for (RI j=0;j<lim;j+=m)
{
int W=1; for (RI k=0;k<i;++k,W=1LL*W*D%mod)
{
int x=f[j+k],y=1LL*f[i+j+k]*W%mod;
f[j+k]=sum(x,y); f[i+j+k]=sub(x,y);
}
}
}
if (!~opt)
{
int Inv=quick_pow(lim); for (i=0;i<lim;++i) f[i]=1LL*f[i]*Inv%mod;
}
}
}P;
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
RI i; for (File.read(n),i=1;i<=n;++i)
File.read(a[i]),b[a[i]]=i,++F[a[i]-i+n];
for (i=m=a[1];i;--i) maxer(b[i],b[i+1]),++G[b[i]-i+m];
for (P.init((len=n+m)<<1),P.NTT(F,1),P.NTT(G,1),i=0;i<lim;++i)
F[i]=1LL*F[i]*G[i]%mod; for (P.NTT(F,-1),i=ans=1;i<=len;++i)
ans=1LL*ans*quick_pow(i,F[i-1+n+m])%mod; ans=quick_pow(ans);
for (fact[0]=i=1;i<=m;++i) fact[i]=1LL*fact[i-1]*i%mod;
for (i=1;i<=n;++i) ans=1LL*ans*fact[a[i]]%mod;
return printf("%d",ans),0;
}
LOJ #6051. 「雅礼集训 2017 Day11」PATH的更多相关文章
- loj 6051 「雅礼集训 2017 Day11」PATH - 多项式 - 钩子公式
题目传送门 传送门 设 $m = \sum_{i = 1}^{n} a_i$. 总方案数显然等于 $\frac{m!}{\prod_{i = 1}^{n} a_i!}$. 考虑这样一个网格图,第 $i ...
- LOJ #6050. 「雅礼集训 2017 Day11」TRI
完全不会的数学神题,正解留着以后填坑 将一个口胡的部分分做法,我们考虑计算格点多边形(包括三角形)面积的皮克公式: \[S=a+\frac{1}{2}b-1\text({a为图形内部节点个数,b为边界 ...
- LOJ #6052. 「雅礼集训 2017 Day11」DIV
完了我是数学姿势越来越弱了,感觉这种CXRdalao秒掉的题我都要做好久 一些前置推导 首先我们很容易得出\((a+bi)(c+di)=k \Leftrightarrow ac-bd=k,ad+bc= ...
- [LOJ 6031]「雅礼集训 2017 Day1」字符串
[LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...
- [LOJ 6030]「雅礼集训 2017 Day1」矩阵
[LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解 ...
- [LOJ 6029]「雅礼集训 2017 Day1」市场
[LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...
- loj #6046. 「雅礼集训 2017 Day8」爷
#6046. 「雅礼集训 2017 Day8」爷 题目描述 如果你对山口丁和 G&P 没有兴趣,可以无视题目背景,因为你估计看不懂 …… 在第 63 回战车道全国高中生大赛中,军神西住美穗带领 ...
- loj 6037 「雅礼集训 2017 Day4」猜数列 - 动态规划
题目传送门 传送门 题目大意 有一个位置数列,给定$n$条线索,每条线索从某一个位置开始,一直向左或者向右走,每遇到一个还没有在线索中出现的数就将它加入线索,问最小的可能的数列长度. 依次从左到右考虑 ...
- Loj 6036 「雅礼集训 2017 Day4」编码 - 2-sat
题目传送门 唯一的传送门 题目大意 给定$n$个串,每个串只包含 ' .问是否可能任意两个不同的串不满足一个是另一个的前缀. 2-sat的是显然的. 枚举每个通配符填0还是1,然后插入Trie树. 对 ...
随机推荐
- java内部类(转)
转自:http://www.cnblogs.com/nerxious/archive/2013/01/24/2875649.html 内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类 ...
- FMDB的简单实用
一.FMDB 的框架引入点击此处去GitHub下载 二.FMDB 的优缺点 优点:使用起来更加面向对象,省去了很多麻烦.冗余的C语言代码:对比苹果自带的Core Data框架,更加轻量级和灵活:提供了 ...
- CentOS7快速搭建LNMP环境
名词解释: LNMP:Linux+Nginx+MySql+PHPLAMP:LInux+Apache+MySql+PHPNginx的正确读法应该是Engine X我们使用CentOS自带的YUM来安装 ...
- 【php增删改查实例】第十节 - 部门管理模块(新增功能)
正常情况下,在一个部门管理页面,不仅仅需要展示列表数据,还需要基本的增删改操作,所以,我们先把之前写好的新增功能集成进来. 在toolbar中,添加一个新增按钮. <div id="t ...
- java中的取整(/)和求余(%)
1.取整运算符取整从字面意思理解就是被除数到底包含几个除数,也就是能被整除多少次,那么它有哪些需要注意的地方呢?先看下面的两端代码: int a = 10; int b = 3; double c= ...
- Spring Boot 定制URL匹配规则的方法
事情的起源:有人问我,说编写了一个/hello访问路径,但是吧,不管是输入/hello还是/hello.html,还是/hello.xxx都能进行访问.当时我还以为他对代码进行处理了,后来发现不是,后 ...
- client,server,nginx 在使用keepAlive 专题
2. TCP keepalive overview In order to understand what TCP keepalive (which we will just call keepali ...
- salesforce lightning零基础学习(四) 事件(component events)简单介绍
lightning component基于事件驱动模型来处理用户界面的交互.这种事件驱动模型和js的事件驱动模型也很相似,可以简单的理解成四部分: 1.事件源:产生事件的地方,可以是页面中的输入框,按 ...
- 详解MUI顶部选项卡(tab-top-webview-main)的用法
最近用MUI做手机app的时候,遇到了一点问题.然后就对这个tab-top-webview-main的源码做了点研究,接下来我将和大家详解一下 tab-top-webview-main的用法和应该注意 ...
- Oracle-14:PLSQL
------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- PL/SQL PL/SQL(Procedural Language):过程化sql语言! 在原本的sql语句之 ...