【CF932E】Perpetual Subtraction(NTT,线性代数)

题面

洛谷

CF

题解

设\(f_{i,j}\)表示\(i\)轮之后这个数恰好为\(j\)的概率。

得到转移:\(\displaystyle f_{i,j}=\sum_{k=j}^{n}f_{i-1,k}*\frac{1}{k+1}\)。

看成生成函数就有\(\displaystyle F_i(x)=\sum_{j=0}^{n}x^j\sum_{k\ge j}\frac{f_{i-1,k}}{k+1}\)。

把两维换过来就是\(\displaystyle \sum_{k=0}^{n}\frac{f_{i-1,k}}{k+1}\sum_{j=0}^k x^j=\sum_{k=0}^n\frac{f_{i-1,k}}{k+1}\frac{x^{k+1}-1}{x-1}=\frac{1}{x-1}\sum_{k=0}^n\frac{f_{i-1,k}}{k+1}(x^{k+1}-1)\)。

而\(\frac{1}{k+1}\)这个东西非常让人不爽,恰好发现后面有\(x^{k+1},那么我们求导再积分\)

\(\displaystyle F_i(x)=\frac{1}{x-1}\int_{1}^x \sum_{k=0}^n f_{i-1,k}t^kdt=\frac{1}{x-1}\int_{1}^xF_{i-1}(t)dt\)

令\(\displaystyle G_i(x)=F_{i}(x+1)=\frac{1}{x}\int_{1}^{x+1}F_{i-1}(t)dt\)。

进一步有:\(\displaystyle G_i(x)=\frac{1}{x}\int_{0}^xG_{i-1}(t)dt=\sum_{j}\frac{g_{i-1,j}}{j+1}x^j\)。

那么,再把\(G(x)\)拆开,我们可以得到:\(g_{i,j}=\frac{g_{i-1,j}}{j+1}\),所以可以知道\(g_{m,j}=\frac{g_{0,j}}{(j+1)^m}\)。

然后考虑\(g\)怎么求。

有:\(\displaystyle \sum_{i}g_ix^i=\sum_{i}f_i(x+1)^i=\sum_{i}f_i\sum_{j}{i\choose j}x^j\),

所以有\(\displaystyle g_i=\sum_{j\ge i}{j\choose i}f_j\),二项式反演有\(\displaystyle f_i=\sum_{j\ge i}(-1)^{j-i}{j\choose i}g_j\)

那么先用\(f_{0,j}\)求出\(g_{0,j}\),乘上\(\frac{1}{(j-1)^m}\)之后再卷积算回去就行了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MOD 998244353
#define MAX 280280
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int W[MAX],r[MAX];
void NTT(int *P,int len,int opt)
{
int l=0,N;for(N=1;N<len;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
int w=fpow(3,(MOD-1)/(i<<1));W[0]=1;
for(int k=1;k<i;++k)W[k]=1ll*W[k-1]*w%MOD;
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
int X=P[j+k],Y=1ll*P[i+j+k]*W[k]%MOD;
P[j+k]=(X+Y)%MOD;P[i+j+k]=(X+MOD-Y)%MOD;
}
}
if(opt==-1)
{
reverse(&P[1],&P[N]);
for(int i=0,inv=fpow(N,MOD-2);i<N;++i)P[i]=1ll*P[i]*inv%MOD;
}
}
int n,m,a[MAX],b[MAX],jc[MAX],jv[MAX],inv[MAX];
int main()
{
n=read();m=read()%(MOD-1);int N;for(N=1;N<=n+n;N<<=1);
for(int i=0;i<=n;++i)a[i]=read();
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=2;i<=n+1;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n+1;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<=n+1;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=0;i<=n;++i)a[i]=1ll*a[i]*jc[i]%MOD,b[i]=jv[i];
reverse(&a[0],&a[n+1]);
NTT(a,N,1);NTT(b,N,1);
for(int i=0;i<N;++i)a[i]=1ll*a[i]*b[i]%MOD;
NTT(a,N,-1);
for(int i=0;i<=n;++i)a[i]=1ll*a[i]*fpow(inv[n-i+1],m)%MOD*((i&1)?MOD-1:1)%MOD;
for(int i=n+1;i<N;++i)a[i]=0;
NTT(a,N,1);
for(int i=0;i<N;++i)a[i]=1ll*a[i]*b[i]%MOD;
NTT(a,N,-1);
for(int i=0;i<=n;++i)a[i]=1ll*a[i]*((i&1)?MOD-1:1)%MOD*jv[n-i]%MOD;
reverse(&a[0],&a[n+1]);
for(int i=0;i<=n;++i)printf("%d ",a[i]);puts("");
return 0;
}

【CF932E】Perpetual Subtraction(NTT,线性代数)的更多相关文章

  1. Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)

    手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学 ...

  2. Codeforces 923E - Perpetual Subtraction(微积分+生成函数+推式子+二项式反演+NTT)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 首先考虑最朴素的 \(dp\),设 \(dp_{z,i}\) 表示经 ...

  3. CF923E Perpetual Subtraction

    生成函数好题! 搬一手铃悬的题解(侵删) 现在只需要考虑怎么求出g和逆变换即可,其实也就是对函数F(x)求F(x+1)和F(x-1). 直接二项式定理展开发现是个卷积的形式,大力NTT即可. #inc ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. ZJOI2018游记Round1

    广告 ZJOI2018Round2游记 All Falls Down 非常感谢学弟学妹们捧场游记虽然这是一篇假游记 ZJOI Round1今天正式落下帷幕.在这过去的三天里遇到了很多朋友,见识了很多有 ...

  6. 【CF932E】Team Work/【BZOJ5093】图的价值 数学+NTT

    [CF932E]Team Work 题意:求$\sum\limits_{i=1}^nC_n^ii^k$,答案模$10^9+7$.$n\le 10^9,k\le 5000$. [BZOJ5093]图的价 ...

  7. [CF932E]Team Work & [BZOJ5093]图的价值

    CF题面 题意:求\(\sum_{i=0}^{n}\binom{n}{i}i^k\) \(n\le10^9,k\le5000\) 模\(10^9+7\) BZOJ题面 题意:求\(n*2^{\frac ...

  8. 【线性代数】2-4:矩阵操作(Matrix Operations)

    title: [线性代数]2-4:矩阵操作(Matrix Operations) toc: true categories: Mathematic Linear Algebra date: 2017- ...

  9. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

随机推荐

  1. Java设计模式---ChainOfResponsibility责任链模式

    参考于 : 大话设计模式 马士兵设计模式视频 代码参考于马士兵设计模式视频 写在开头:职责链模式:使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系 图来自大话设计模式,下面我的代 ...

  2. 006. SSO 单点登录(同域SSO/跨域SSO)

    SSO 单点登录:一次登录,处处登录. 只需在一个登录认证服务下进行登录后,就可访问所有相互信任的应用 同域 SSO 1. session-cookie机制:服务端通过cookie认证客户端. 用户第 ...

  3. 中文代码示例之5分钟入门TypeScript

    "中文编程"知乎专栏原文 Typescript官方文档起的这个噱头名字: TypeScript in 5 minutes, 虽然光看完文章就不止5分钟...走完整个文档流水账如下( ...

  4. C# -- 使用 DriveInfo 获取磁盘驱动器信息

    C# -- 使用 DriveInfo 获取磁盘驱动器信息 1. 代码实现 class Program { static void Main(string[] args) { GetComputerDi ...

  5. 记录Javascript集合操作

    function Set() { var items = {}; /** * 添加元素 * @param {[type]} value [description] */ this.add = func ...

  6. 在Linux系统安装Nodejs 最简单步骤

    1.去官网下载和自己系统匹配的文件: 英文网址:https://nodejs.org/en/download/ 中文网址:http://nodejs.cn/download/ 通过  uname -a ...

  7. 使用shell快速建立上万个文件夹

    #!/bin/bash#!This is a shell script to finish the folders tasks.rm -rf /home/cpay/zyc/filemkdir /hom ...

  8. host头注入

    看到有说这个题为出题而出题,其实我还是这么觉得, host出问题的话我觉得一般只有在审计代码,看到才知道有host注入 假设不提示host注入,就有难度了 常规的注入了

  9. c++ primer plus 第二章 \n与endl在输出上的区别

        在书上看到如下一段话:     一个差别是,endl确保程序继续运行前刷新输出(将其立即显示在屏幕上):而使用"\n"不能提供这样的保证,这意味着在有些系统中,有时可能在您 ...

  10. Core官方DI解析(2)-ServiceProvider

    ServiceProvider ServiceProvider是我们用来获取服务实例对象的类型,它也是一个特别简单的类型,因为这个类型本身并没有做什么,其实以一种代理模式,其核心功能全部都在IServ ...