Implement pow(xn), which calculates x raised to the power n(xn).

Example 1:

Input: 2.00000, 10
Output: 1024.00000

Example 2:

Input: 2.10000, 3
Output: 9.26100

Example 3:

Input: 2.00000, -2
Output: 0.25000
Explanation: 2-2 = 1/22 = 1/4 = 0.25

Note:

  • -100.0 < x < 100.0
  • n is a 32-bit signed integer, within the range [−231, 231 − 1]
  

这道题让我们求x的n次方,如果只是简单的用个 for 循环让x乘以自己n次的话,未免也把 LeetCode 上的题想的太简单了,一句话形容图样图森破啊。OJ 因超时无法通过,所以需要优化,使其在更有效的算出结果来们可以用递归来折半计算,每次把n缩小一半,这样n最终会缩小到0,任何数的0次方都为1,这时候再往回乘,如果此时n是偶数,直接把上次递归得到的值算个平方返回即可,如果是奇数,则还需要乘上个x的值。还有一点需要引起注意的是n有可能为负数,对于n是负数的情况,我可以先用其绝对值计算出一个结果再取其倒数即可,之前是可以的,但是现在 test case 中加了个负2的31次方后,这就不行了,因为其绝对值超过了整型最大值,会有溢出错误,不过可以用另一种写法只用一个函数,在每次递归中处理n的正负,然后做相应的变换即可,代码如下:

解法一:

class Solution {
public:
double myPow(double x, int n) {
if (n == ) return ;
double half = myPow(x, n / );
if (n % == ) return half * half;
if (n > ) return half * half * x;
return half * half / x;
}
};

这道题还有迭代的解法,让i初始化为n,然后看i是否是2的倍数,不是的话就让 res 乘以x。然后x乘以自己,i每次循环缩小一半,直到为0停止循环。最后看n的正负,如果为负,返回其倒数,参见代码如下:

解法二:

class Solution {
public:
double myPow(double x, int n) {
double res = 1.0;
for (int i = n; i != ; i /= ) {
if (i % != ) res *= x;
x *= x;
}
return n < ? / res : res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/50

类似题目:

Sqrt(x)

Super Pow

参考资料:

https://leetcode.com/problems/powx-n/

https://leetcode.com/problems/powx-n/discuss/19733/simple-iterative-lg-n-solution

https://leetcode.com/problems/powx-n/discuss/19546/Short-and-easy-to-understand-solution

https://leetcode.com/problems/powx-n/discuss/19544/5-different-choices-when-talk-with-interviewers

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Pow(x, n) 求x的n次方的更多相关文章

  1. [LeetCode] 50. Pow(x, n) 求x的n次方

    Implement pow(x, n), which calculates x raised to the power n(xn). Example 1: Input: 2.00000, 10 Out ...

  2. 50 Pow(x, n)(求x的n次方Medium)

    题目意思:x为double,n为int,求x的n次方 思路分析:直接求,注意临界条件 class Solution { public: double myPow(double x, int n) { ...

  3. [LintCode] Pow(x, n) 求x的n次方

    Implement pow(x, n). Notice You don't need to care about the precision of your answer, it's acceptab ...

  4. LeetCode Pow(x, n) (快速幂)

    题意 Implement pow(x, n). 求X的N次方. 解法 用正常的办法来做是会超时的,因为可能有21亿次方的情况,所以需要优化一下.这里用到了快速幂算法,简单来说就是将指数分解成二进制的形 ...

  5. Quick Pow: 如何快速求幂

    今天讲个有趣的算法:如何快速求 \(n^m\),其中 n 和 m 都是整数. 为方便起见,此处假设 m >= 0,对于 m < 0 的情况,求出 \(n^{|m|}\) 后再取倒数即可. ...

  6. C语言求x的y次方,自定义函数,自己的算法

    我是一名高二中学生,初中时接触电脑,非常酷爱电脑技术,自己百度学习了有两年多了,编程语言也零零散散的学习了一点,想在大学学习计算机专业,所以现在准备系统的学习C语言,并在博客中与大家分享我学习中的心得 ...

  7. 44. log(n)求a的n次方[power(a,n)]

    [题目] 实现函数double Power(double base, int exponent),求base的exponent次方,不需要考虑溢出. [分析] 这是一道看起来很简单的问题,很容易写出如 ...

  8. [华为机试练习题]50.求M的N次方的最后三位

    题目 描写叙述: 正整数M 的N次方有可能是一个很大的数字,我们仅仅求该数字的最后三位 例1: 比方输入5和3 ,5的3次方为125.则输出为125 例2: 比方输入2和10 2的10次方为1024 ...

  9. 求2的n次方对1e9+7的模,n大约为10的100000次方(费马小定理)

    昨天做了一个题,简化题意后就是求2的n次方对1e9+7的模,其中1<=n<=10100000.这个就算用快速幂加大数也会超时,查了之后才知道这类题是对费马小定理的考察. 费马小定理:假如p ...

随机推荐

  1. [Servlet] 初识Servlet

    什么是Servlet? 定义 Servlet的全称是 Server Applet,顾名思义,就是用 Java 编写的服务器端程序. Servlet 是一个 Java Web开发标准,狭义的Servle ...

  2. LINQ to SQL语句(20)之存储过程

    在我们编写程序中,往往需要一些存储过程,在LINQ to SQL中怎么使用呢?也许比原来的更简单些.下面我们以NORTHWND.MDF数据库中自带的几个存储过程来理解一下. 1.标量返回 在数据库中, ...

  3. IL接口和类的属性

    上一篇文章学习了IL的入门,接下来我们再通过两个例子来了解下类的属性.构造函数以及接口的使用 一.类的属性.构造函数 1.先看下我们要构建的类的C#代码,然后再进行IL的实现,示例代码如下: [Ser ...

  4. mybatis笔记3 一些原理的理解

    1,mybatis流程跟踪,原理理解 基本思路: 从SqlSessionFactory的初始化出发,观察资源的准备和环境的准备,以及实现持久层的一些过程: 进入SqlSessionFactoryBea ...

  5. Java Servlet+Objective-c图上传 步骤详细

    一. Servlet 1.创建图片保存的路径 在项目的WebContent下创建一个上传图片的专属文件夹. 这个文件夹创建后,我们保存的图片就在该文件夹的真实路径下,但是在项目中是无法看到上传的图片的 ...

  6. Linux归档压缩、分区管理与LVM管理

    归档和压缩命令: 命令格式: gzip [-9] 文件名 bzip2 [-9] 文件名 gzip –d .gz格式的压缩文件 bzip2 –d .bz2格式的压缩文件 选项: -9:高压缩比,多用于压 ...

  7. 在xcode中用 swift 进行网络服务请求

    xcode集成开发环境是运行于Mac苹果电脑上用于开发swift应用程序的工具,利用xcode可以很方便.直观的开发OS X和iOS系统所支持的应用程序. 1 开发环境: Mac OS 10.11 X ...

  8. 【前端优化之拆分CSS】前端三剑客的分分合合

    几年前,我们这样写前端代码: <div id="el" style="......" onclick="......">测试&l ...

  9. JavaScript标准参考教材(alpha)--笔记

    一.导论 二.基本语法 1.严格来说var a=1与a=1效果不太一样,delete命令无法删除前者. JavaScirpt是一种动态类型语言,也就是说,变量的类型没有限制,可以赋予各种类型的值. J ...

  10. C#设计模式:原型模式(Prototype)及深拷贝、浅拷贝

    原型模式(Prototype) 定义: 原型模式:用原型实例指定创建对象的种类,并且通过复制这些原型创建新的对象.被复制的实例被称为原型,这个原型是可定制的. Prototype Pattern也是一 ...