[Codeforces 922E]Birds
Description
一条直线上有 \(n\) 棵树,每棵树上有 \(c_i\) 只鸟,在一棵树底下召唤一只鸟的魔法代价是 \(cost_i\) 每召唤一只鸟,魔法上限会增加 \(B\) 。从一棵树走到另一棵树,会增加魔法 \(X\) ,一开始的魔法和魔法上限都是 \(W\) 。问最多能够召唤的鸟的个数。
\(1\leq n\leq 1000,1\leq B,X,W\leq 10^9,1\leq \sum_{i=1}^n c_i\leq 10000\)
Solution
容易想到记 \(f_{i,j}\) 为第 \(i\) 棵树时,召唤了 \(j\) 只鸟,剩余魔法的最大值。
转移的话就是枚举 \(j-c_i\) 范围内的上一棵树的最大值。
但这样复杂度似乎不太漂亮,考虑用单调队列优化,一个显然的“滑动窗口”模型。复杂度为 \(O(n\sum c)\) 的。
Code
#include <bits/stdc++.h>
using namespace std;
const int N = 1000, C = 10000;
long long f[N+5][C+5], n, w, b, x, c[N+5], cost[N+5], tolc;
int q[C+5], head, tail; bool v[N+5][C+5];
void work() {
scanf("%I64d%I64d%I64d%I64d", &n, &w, &b, &x);
for (int i = 1; i <= n; i++) scanf("%I64d", &c[i]), tolc += c[i];
for (int i = 1; i <= n; i++) scanf("%I64d", &cost[i]);
f[0][0] = w; v[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= tolc; j++) f[i-1][j] = min(f[i-1][j]+x, w+b*j);
head = tail = 0;
for (int j = 0; j <= tolc; j++) {
if (v[i-1][j]) {
while (head < tail && f[i-1][q[tail-1]]+cost[i]*q[tail-1] <= f[i-1][j]+cost[i]*j) --tail;
q[tail++] = j;
}
while (head < tail && j-q[head] > c[i]) ++head;
if (head < tail && f[i-1][q[head]]+cost[i]*q[head]-cost[i]*j >= 0)
f[i][j] = f[i-1][q[head]]+cost[i]*q[head]-cost[i]*j, v[i][j] = 1;
}
}
int ans = 0;
for (int i = 0; i <= tolc; i++) if (v[n][i]) ans = i;
printf("%d\n", ans);
}
int main() {work(); return 0; }
[Codeforces 922E]Birds的更多相关文章
- CodeForces - 922E Birds —— DP
题目链接:https://vjudge.net/problem/CodeForces-922E E. Birds time limit per test 1 second memory limit p ...
- 2018.12.14 codeforces 922E. Birds(分组背包)
传送门 蒟蒻净做些水题还请大佬见谅 没错这又是个一眼的分组背包. 题意简述:有n棵树,每只树上有aia_iai只鸟,第iii棵树买一只鸟要花cic_ici的钱,每买一只鸟可以奖励bbb块钱,从一棵 ...
- [总结]一些 DP 优化方法
目录 注意本文未完结 写在前面 矩阵快速幂优化 前缀和优化 two-pointer 优化 决策单调性对一类 1D/1D DP 的优化 \(w(i,j)\) 只含 \(i\) 和 \(j\) 的项--单 ...
- Codeforces 922 E Birds (背包dp)被define坑了的一题
网页链接:点击打开链接 Apart from plush toys, Imp is a huge fan of little yellow birds! To summon birds, Imp ne ...
- [Codeforces Round #461 (Div2)] 题解
[比赛链接] http://codeforces.com/contest/922 [题解] Problem A. Cloning Toys [算法] 当y = 0 , 不可以 当 ...
- python爬虫学习(5) —— 扒一下codeforces题面
上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
- 【Codeforces 738A】Interview with Oleg
http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...
随机推荐
- JavaWeb学习笔记二 Http协议和Tomcat服务器
Http协议 HTTP,超文本传输协议(HyperText Transfer Protocol),是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这个标准.设计HTTP最初的目的是为 ...
- c语言——第0次作业
1.你认为大学的学习生活.同学关系.师生应该是怎样?请一个个展开描写 大学生活:大学生活充满着挑战,首先当然必须先掌握自己所学的专业知识,然后就要学会独立,可以处理好人际关系,并且要有更强的自我约束能 ...
- java web 初学
我希望在本学期本堂课上学会使用java web 框架 精通mvc架构模式 学会通过框架和数据库对产品进行构造与编写. 我计划每周用16小时的时间进行学习java web 一周4学时上课时间 周一到周五 ...
- redis 持久化之 RDB
redis的运维过程中,我们对数据持久化做一个基本的总结. 1什么是持久化: redis 所有数据保持在内存中,对数据的更新将异步地保存到磁盘上. RDB 文件创建的过程是直接从内存 写入到我们我磁盘 ...
- NoSQL&MongoDB
MongoDB: Is NoSQL(技术的实现,并非是一个特定的技术,与RMDS对立):Not only SQL 大数据问题:BigData,eg:同时访问几个页面,代码实现几个页面访问量的大小? F ...
- OpenID Connect + OAuth2.0
一.问题的提出 现代应用程序或多或少都是如下这样的架构: 在这种情况下,前端.中间层和后端都需要进行验证和授权来保护资源,所以不能仅仅在业务逻辑层或者服务接口层来实现基础的安全功能.为了解决这样的问题 ...
- yum 安装Apache
1.查看是否安装Apache,命令: rpm -qa httpd 2.yum install httpd ,yum安装Apache 3.chkconfig httpd on s ...
- Django通过pycharm创建后,如何登录admin后台?
问题背景: 使用pycharm创建完成django项目(项目名称为:mydjangopro,app名称为my_blog) , 本想登录后台直接输入地址:http://127.0.0.1:8000/ad ...
- 项目版本与分支管理之阿里AoneFlow模式分析
前言 在我前期的项目管理的经验中,一个项目需要维护多个产品及多个版本,这给版本与分支的管理增加了难度.前期没有重视,使得分支太多太乱,版本也没记录好,引发了很多的问题.在多种分支与版本的管理模式下,最 ...
- ubuntu临时修改ip,mac的方法示例
ifconfig eth0 down ifconfig eth0 154.84.28.148 netmask 255.255.255.0 route add default gw 154.84.28. ...