Description

题库链接

给定一棵有 \(n\) 个节点的无根树和 \(m\) 个操作,操作有 \(2\) 类:

  1. 将节点 \(a\) 到节点 \(b\) 路径上所有点都染成颜色 \(c\) ;
  2. 询问节点 \(a\) 到节点 \(b\) 路径上的颜色段数量(连续相同颜色被认为是同一段)

Solution

线段树苟题。因为没有下传 \(lazy\) 标记调了一上午。

Code

//It is made by Awson on 2018.3.4
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 1e5;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, m, c[N+5], a[N+5], u, v, ca;
struct tt {int to, next; }edge[(N<<1)+5];
int path[N+5], Top;
int size[N+5], id[N+5], son[N+5], top[N+5], dep[N+5], fa[N+5], pos;
char ch[5];
struct node {
int l, r, cnt;
node() {}
node(int _l, int _r, int _cnt) {l = _l, r = _r, cnt = _cnt; }
node operator + (const node &b) const {node tmp; tmp.l = l, tmp.r = b.r, tmp.cnt = cnt+b.cnt-(r==b.l); return tmp; }
};
struct Segment_tree {
#define lr(o) (o<<1)
#define rr(o) (o<<1|1)
node sgm[(N<<2)+5]; int lazy[(N<<2)+5];
void pushdown(int o) {sgm[lr(o)] = sgm[rr(o)] = sgm[o]; lazy[lr(o)] = lazy[rr(o)] = 1; lazy[o] = 0; }
void build(int o, int l, int r) {
if (l == r) {sgm[o] = node(a[l], a[l], 1); return; }
int mid = (l+r)>>1;
build(lr(o), l, mid); build(rr(o), mid+1, r); sgm[o] = sgm[lr(o)]+sgm[rr(o)];
}
node query(int o, int l, int r, int a, int b) {
if (a <= l && r <= b) return sgm[o];
if (lazy[o]) pushdown(o); int mid = (l+r)>>1;
if (b <= mid) return query(lr(o), l, mid, a, b);
if (a > mid) return query(rr(o), mid+1, r, a, b);
return query(lr(o), l, mid, a, b)+query(rr(o), mid+1, r, a, b);
}
void update(int o, int l, int r, int a, int b, int col) {
if (a <= l && r <= b) {sgm[o] = node(col, col, 1), lazy[o] = 1; return; }
if (lazy[o]) pushdown(o); int mid = (l+r)>>1;
if (a <= mid) update(lr(o), l, mid, a, b, col);
if (b > mid) update(rr(o), mid+1, r, a, b, col);
sgm[o] = sgm[lr(o)]+sgm[rr(o)];
}
}T; void add(int u, int v) {edge[++Top].to = v, edge[Top].next = path[u], path[u] = Top; }
void dfs1(int o, int depth, int father) {
dep[o] = depth, size[o] = 1, fa[o] = father;
for (int i = path[o]; i; i = edge[i].next)
if (dep[edge[i].to] == 0) {
dfs1(edge[i].to, depth+1, o); size[o] += size[edge[i].to];
if (size[edge[i].to] > size[son[o]]) son[o] = edge[i].to;
}
}
void dfs2(int o, int tp) {
id[o] = ++pos, a[pos] = c[o], top[o] = tp;
if (son[o]) dfs2(son[o], tp);
for (int i = path[o]; i; i = edge[i].next)
if (edge[i].to != fa[o] && edge[i].to != son[o]) dfs2(edge[i].to, edge[i].to);
}
void update(int u, int v, int c) {
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) Swap(u, v);
T.update(1, 1, n, id[top[u]], id[u], c);
u = fa[top[u]];
}
if (dep[u] < dep[v]) Swap(u, v);
T.update(1, 1, n, id[v], id[u], c);
}
int query(int u, int v) {
node n1, n2; int f1 = 1, f2 = 1;
while (top[u] != top[v]) {
if (dep[top[u]] > dep[top[v]]) {
if (f1) n1 = T.query(1, 1, n, id[top[u]], id[u]);
else n1 = T.query(1, 1, n, id[top[u]], id[u])+n1;
u = fa[top[u]]; f1 = 0;
}else {
if (f2) n2 = T.query(1, 1, n, id[top[v]], id[v]);
else n2 = T.query(1, 1, n, id[top[v]], id[v])+n2;
v = fa[top[v]]; f2 = 0;
}
}
if (dep[u] > dep[v]) {
if (f1) n1 = T.query(1, 1, n, id[v], id[u]);
else n1 = T.query(1, 1, n, id[v], id[u])+n1; f1 = 0;
}else {
if (f2) n2 = T.query(1, 1, n, id[u], id[v]);
else n2 = T.query(1, 1, n, id[u], id[v])+n2; f2 = 0;
}
if (f1) return n2.cnt;
if (f2) return n1.cnt;
Swap(n1.l, n1.r); n1 = n1+n2; return n1.cnt;
}
void work() {
read(n), read(m); for (int i = 1; i <= n; i++) read(c[i]);
for (int i = 1; i < n; i++) read(u), read(v), add(u, v), add(v, u);
dfs1(1, 1, 0), dfs2(1, 1); T.build(1, 1, n);
while (m--) {
scanf("%s", ch);
if (ch[0] == 'Q') read(u), read(v), writeln(query(u, v));
else read(u), read(v), read(ca), update(u, v, ca);
}
}
int main() {
work(); return 0;
}

[SDOI 2011]染色的更多相关文章

  1. [BZOJ 2243] [SDOI 2011] 染色 【树链剖分】

    题目链接:BZOJ - 2243 题目分析 树链剖分...写了200+行...Debug了整整一天+... 静态读代码读了 5 遍 ,没发现错误,自己做小数据也过了. 提交之后全 WA . ————— ...

  2. BZOJ 2243 SDOI 2011染色

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2243 算法讨论: 树链剖分把树放到线段树上.然后线段树的每个节点要维护的东西有左端点的颜色 ...

  3. 解题: SDOI 2011 染色

    题面 强行把序列问题通过树剖套在树上...算了算是回顾了一下树剖的思想=.= 每次树上跳的时候注意跳的同时维护当前拼出来的左右两条链的靠上的端点,然后拼起来的时候讨论一下拼接点,最后一下左右两边的端点 ...

  4. 【SDOI 2011】染色

    [题目链接] 点击打开链接 [算法] 树链剖分 [代码] 本题,笔者求最近公共祖先并没有用树链剖分“往上跳”的方式,而是用倍增法.笔者认为这样比较好写,代码可读性 比较高 此外,笔者的线段树并没有用懒 ...

  5. 【codevs 1565】【SDOI 2011】计算器 快速幂+拓展欧几里得+BSGS算法

    BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath ...

  6. [bzoj2286][Sdoi 2011]消耗战

    [bzoj2286]消耗战 标签: 虚树 DP 题目链接 题解 很容易找出\(O(mn)\)的做法. 只需要每次都dp一遍. 但是m和n是同阶的,所以这样肯定会T的. 注意到dp的时候有很多节点是不需 ...

  7. [SDOI 2011]黑白棋

    Description 题库链接 给出一个 \(1\times n\) 的棋盘,棋盘上有 \(k\) 个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 \( ...

  8. [SDOI 2011]消耗战

    Description 题库链接 给你一棵 \(n\) 个节点根节点为 \(1\) 的有根树,有边权. \(m\) 次询问,每次给出 \(k_i\) 个关键点.询问切断一些边,使这些点到根节点不连通, ...

  9. [SDOI 2011]计算器

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

随机推荐

  1. 宝塔Linux面板命令大全

    安装宝塔 Centos安装脚本 yum install -y wget && wget -O install.sh http://download.bt.cn/install/inst ...

  2. ZJOI2018游记

    我是一只普及组的菜鸡,我很菜 我参加 \(ZJOI\) 只是来试试水(水好深啊~),看看大佬(差距好大啊~),以后要好好学习 \(day0\) 下午2:00,颁奖 还以为要到很晚,还是挺快的 \(da ...

  3. fs 创建文件夹

    var http = require("http"); var fs = require("fs"); var server = http.createServ ...

  4. Swift -欢迎界面1页, 延长启动图片的显示时间(LaunchImage)

    转自:http://www.hangge.com/blog/cache/detail_1238.html http://www.hangge.com/blog/cache/detail_672.htm ...

  5. vue 的模板编译—ast(抽象语法树) 详解与实现

    首先AST是什么? 在计算机科学中,抽象语法树(abstract syntax tree或者缩写为AST),或者语法树(syntax tree),是源代码的抽象语法结构的树状表现形式,这里特指编程语言 ...

  6. 安装CentOS7,连接mysql提示密码错误

    1.grep 'temporary password' /var/log/mysqld.log 如果上面命令没有查看到密码 2.修改my.cnf文件.在mysqld下加入skip-grant-tabl ...

  7. MySQL中使用sql语句获得表结构

    最近在研究PHP,那么就必须涉及到mysql.其中一个功能通过表数据自动生成页面,紧接着发现在一张空表中无法读取数据(因为人家刚刚新建,就是空的没有数据) 延伸出来便是直接查表结构获得字段名,再进行处 ...

  8. 新概念英语(1-39)Don't drop it!

    新概念英语(1-39)Don't drop it! Where does Sam put the vase in the end ? A:What are you going to do with t ...

  9. Nginx负载均衡(架构之路)

    [前言] 在大型网站中,负载均衡是有想当必要的.尤其是在同一时间访问量比较大的大型网站,例如网上商城,新闻等CMS系统,为了减轻单个服务器的处理压力,我们引进了负载均衡这一个概念,将一个服务器的压力分 ...

  10. Mac里安装Jmeter

    前提是需要安装jdk,参见http://www.cnblogs.com/fun0623/p/4703456.html 1.解压包 (双击apache-jmeter-2.13) 2.进去到解压后的bin ...