[开发技巧]·Numpy广播机制的深入理解与应用

1.问题描述

我们在使用Numpy进行数据的处理时,经常会用到广播机制来简化操作,例如在所有元素都加上一个数,或者在某些纬度上作相同的操作。广播机制很方便,但是概念却也有些复杂,可能会让一些初学者感到困惑,在使用过程中,产生一些错误。

本文以实战演练的方式来讲解广播机制的概念与应用,不仅仅适用于Numpy,在TensorFlow,PyTorch,MxNet的广播机制中同样适用。

2.原理讲解

广播机制遵循一下准则:

1.首先以最长纬度为准拓展为相同纬度大小,有些纬度为零,先变为1,在进行广播。

2.纬度上从右往左进行匹配,两个数组要么在一个纬度上相同,要么其中一个为1。

3.各个相匹配纬度上的数据都以此最长的shape为准进行复制对齐。

3.实战演练

>>> import numpy as np
>>> num1 = np.array(3)
>>> num1.shape
()
>>> al = np.ones([1,3])
>>> bl = np.ones([4,1])*2
>>> al
array([[1., 1., 1.]])
>>> bl
array([[2.],
[2.],
[2.],
[2.]])

我们新建了一些数据,其中num1是一个标量,纬度为0,al与bl都是纬度为2的矩阵

现在我们让al+num1

>>> al_num1 = al+num1
>>> al_num1
array([[4., 4., 4.]])

根据矩阵加法的准则,两个矩阵的形状必须相同,对应元素相加,我们可以求得num1广播操作时,变成了array([[3., 3., 3.]])

其实就对应上面三个法则,首先这两个数据先进行条件1的操作,num1就变成了array([[3.]]),然后就满足了条件2,被条件3进行了广播。

再举一个例子,让al+bl,和上面例子类似,al与bl都被拓展为了shape(4,3),大家可以自己根据法则计算推理一遍。

>>> al_bl = al + bl
>>> al_bl
array([[3., 3., 3.],
[3., 3., 3.],
[3., 3., 3.],
[3., 3., 3.]])

最后举一个不符合的例子

>>> cl = np.ones([2,2])*3
>>> cl
array([[3., 3.],
[3., 3.]])
>>> al_cl = al + cl
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (1,3) (2,2)

为什么此次广播失败了呢,我们可以发现cl与al的最右边第一个纬度,大小既不相等,其中一个也不为1或者0(如果为0也会被拓展为1)。所以无法进行广播。

Hope this helps

[开发技巧]·Numpy广播机制的深入理解与应用的更多相关文章

  1. [开发技巧]·Numpy中对axis的理解与应用

    [开发技巧]·Numpy中对axis的理解与应用 1.问题描述 在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数. 一般的教程都是针 ...

  2. numpy广播机制,取特定行、特定列的元素 的高级索引取法

    numpy广播机制,取特定行.特定列的元素 的高级索引取法 enter description here enter description here

  3. NumPy 广播机制(Broadcasting)

    一.何为广播机制 a.广播机制是Numpy(开源数值计算工具,用于处理大型矩阵)里一种向量化数组操作方法. b.Numpy的通用函数(Universal functions) 中要求输入的两个数组sh ...

  4. 安卓开发笔记——Broadcast广播机制(实现自定义小闹钟)

    什么是广播机制? 简单点来说,是一种广泛运用在程序之间的传输信息的一种方式.比如,手机电量不足10%,此时系统会发出一个通知,这就是运用到了广播机制. 广播机制的三要素: Android广播机制包含三 ...

  5. numpy中的广播机制

    广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...

  6. numpy和tensorflow中的广播机制

    广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...

  7. [开发技巧]·pandas如何保存numpy元素

    [开发技巧]·pandas如何保存numpy元素 ​ 1.问题描述 在开发的过程中遇到一个问题,就是需要把numpy作为pandas的一个元素进行保存,注意不是作为一列元素.但是实践的过程中却不顺利, ...

  8. [开发技巧]·TensorFlow中numpy与tensor数据相互转化

    [开发技巧]·TensorFlow中numpy与tensor数据相互转化 个人主页–> https://xiaosongshine.github.io/ - 问题描述 在我们使用TensorFl ...

  9. Numpy常用概念-对象的副本和视图、向量化、广播机制

    一.引言 在我们操作数组的时候,返回的是新数组还是原数组的链接,我们就需要了解对象副本和视图的区别. 向量化和广播是numpy内部实现的基础. 二.对象副本和视图 我们应该注意到,在操作数组的时候返回 ...

随机推荐

  1. http_server.go

    , fmt.Sprintf("%s: closing %s", proto, listener.Addr())) }

  2. csc.exe的环境变量设置

    csc.exe使用来编译*.cs文件的,但必须要在安装目录下使用.所以需要设置一下环境变量. C#的环境变量设置 1.“win+R” 打开运行窗口,并输入 “cmd”: 2.运行“set path=% ...

  3. jdk源码阅读笔记-LinkedHashMap

    Map是Java collection framework 中重要的组成部分,特别是HashMap是在我们在日常的开发的过程中使用的最多的一个集合.但是遗憾的是,存放在HashMap中元素都是无序的, ...

  4. .net core Entity Framework 与 EF Core

    重点讲 Entity Framework Core ! (一)Entity Framework 它是适用于.NET 的对象关系映射程序 (ORM),现在的EF6已经是久经沙场,并经历重重磨难,获得一致 ...

  5. 死磕 java集合之LinkedTransferQueue源码分析

    问题 (1)LinkedTransferQueue是什么东东? (2)LinkedTransferQueue是怎么实现阻塞队列的? (3)LinkedTransferQueue是怎么控制并发安全的? ...

  6. 详解线程池execute和submit用法

    在使用线程池时,我们都知道线程池有两种提交任务的方式,那么他们有什么区别呢? 1.execute提交的是Runnable类型的任务,而submit提交的是Callable或者Runnable类型的任务 ...

  7. 我眼中的 Nginx(五):Nginx — 子请求设计之道

    张超:又拍云系统开发高级工程师,负责又拍云 CDN 平台相关组件的更新及维护.Github ID: tokers,活跃于 OpenResty 社区和 Nginx 邮件列表等开源社区,专注于服务端技术的 ...

  8. Asp.Net Core 轻松学-多线程之Task(补充)

    前言     在上一章 Asp.Net Core 轻松学-多线程之Task快速上手 文章中,介绍了使用Task的各种常用场景,但是感觉有部分内容还没有完善,在这里补充一下. 1. 任务的等待 在使用 ...

  9. Java虚拟机三:OutOfMemoryError异常分析

    根据Java虚拟机规范,虚拟机内存中除过程序计数器之外的运行时数据区域都会发生OutOfMemoryError(OOM),本文将通过实际例子验证分析各个数据区域OOM的情况.为了更贴近生产,本次所有例 ...

  10. MongoDB之基本操作与日常维护

    MongoDB基本操作 MongoDB的基本操作主要是对数据库.集合.文档的操作,包括创建数据库.删除数据库.插入文档.更改文档.删除文档.和查询文档. 操作 描述 show dbs 查看当前实例下的 ...