[开发技巧]·Numpy广播机制的深入理解与应用
[开发技巧]·Numpy广播机制的深入理解与应用
1.问题描述
我们在使用Numpy进行数据的处理时,经常会用到广播机制来简化操作,例如在所有元素都加上一个数,或者在某些纬度上作相同的操作。广播机制很方便,但是概念却也有些复杂,可能会让一些初学者感到困惑,在使用过程中,产生一些错误。
本文以实战演练的方式来讲解广播机制的概念与应用,不仅仅适用于Numpy,在TensorFlow,PyTorch,MxNet的广播机制中同样适用。
2.原理讲解
广播机制遵循一下准则:
1.首先以最长纬度为准拓展为相同纬度大小,有些纬度为零,先变为1,在进行广播。
2.纬度上从右往左进行匹配,两个数组要么在一个纬度上相同,要么其中一个为1。
3.各个相匹配纬度上的数据都以此最长的shape为准进行复制对齐。
3.实战演练
>>> import numpy as np
>>> num1 = np.array(3)
>>> num1.shape
()
>>> al = np.ones([1,3])
>>> bl = np.ones([4,1])*2
>>> al
array([[1., 1., 1.]])
>>> bl
array([[2.],
[2.],
[2.],
[2.]])
我们新建了一些数据,其中num1是一个标量,纬度为0,al与bl都是纬度为2的矩阵
现在我们让al+num1
>>> al_num1 = al+num1
>>> al_num1
array([[4., 4., 4.]])
根据矩阵加法的准则,两个矩阵的形状必须相同,对应元素相加,我们可以求得num1广播操作时,变成了array([[3., 3., 3.]])
其实就对应上面三个法则,首先这两个数据先进行条件1的操作,num1就变成了array([[3.]]),然后就满足了条件2,被条件3进行了广播。
再举一个例子,让al+bl,和上面例子类似,al与bl都被拓展为了shape(4,3),大家可以自己根据法则计算推理一遍。
>>> al_bl = al + bl
>>> al_bl
array([[3., 3., 3.],
[3., 3., 3.],
[3., 3., 3.],
[3., 3., 3.]])
最后举一个不符合的例子
>>> cl = np.ones([2,2])*3
>>> cl
array([[3., 3.],
[3., 3.]])
>>> al_cl = al + cl
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (1,3) (2,2)
为什么此次广播失败了呢,我们可以发现cl与al的最右边第一个纬度,大小既不相等,其中一个也不为1或者0(如果为0也会被拓展为1)。所以无法进行广播。
Hope this helps
[开发技巧]·Numpy广播机制的深入理解与应用的更多相关文章
- [开发技巧]·Numpy中对axis的理解与应用
[开发技巧]·Numpy中对axis的理解与应用 1.问题描述 在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数. 一般的教程都是针 ...
- numpy广播机制,取特定行、特定列的元素 的高级索引取法
numpy广播机制,取特定行.特定列的元素 的高级索引取法 enter description here enter description here
- NumPy 广播机制(Broadcasting)
一.何为广播机制 a.广播机制是Numpy(开源数值计算工具,用于处理大型矩阵)里一种向量化数组操作方法. b.Numpy的通用函数(Universal functions) 中要求输入的两个数组sh ...
- 安卓开发笔记——Broadcast广播机制(实现自定义小闹钟)
什么是广播机制? 简单点来说,是一种广泛运用在程序之间的传输信息的一种方式.比如,手机电量不足10%,此时系统会发出一个通知,这就是运用到了广播机制. 广播机制的三要素: Android广播机制包含三 ...
- numpy中的广播机制
广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...
- numpy和tensorflow中的广播机制
广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...
- [开发技巧]·pandas如何保存numpy元素
[开发技巧]·pandas如何保存numpy元素 1.问题描述 在开发的过程中遇到一个问题,就是需要把numpy作为pandas的一个元素进行保存,注意不是作为一列元素.但是实践的过程中却不顺利, ...
- [开发技巧]·TensorFlow中numpy与tensor数据相互转化
[开发技巧]·TensorFlow中numpy与tensor数据相互转化 个人主页–> https://xiaosongshine.github.io/ - 问题描述 在我们使用TensorFl ...
- Numpy常用概念-对象的副本和视图、向量化、广播机制
一.引言 在我们操作数组的时候,返回的是新数组还是原数组的链接,我们就需要了解对象副本和视图的区别. 向量化和广播是numpy内部实现的基础. 二.对象副本和视图 我们应该注意到,在操作数组的时候返回 ...
随机推荐
- bzoj 3166 可持久化Tire
每一个数能做出的贡献就是其两端第二个比他大的中间的数和他的异或值 按权值大小排序,按照位置扔进set,set内的元素都是比他大的,也是全的 然后Tire上跑就行了.. #include<cstd ...
- CocoaPods 安装 使用&常见操作错误
CocoaPods 安装 使用 1.开启 terminal 2.移除现有 Ruby 默认源 $ gem sources --remove https://rubygems.org/ 3.使用新的源 $ ...
- Pandas之groupby( )用法笔记
groupby官方解释 DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True ...
- Mysql存储过程 —— SEQUENCE的实现
http://blog.csdn.net/crazylaa/article/details/5368447 创建sql语句: DROP TABLE IF EXISTS sequence; -- 建se ...
- 关于JVM的垃圾回收(GC) 这可能是你想了解的
目录 1 JVM中Java对象的分类 2 JVM的GC类型及触发条件 2.1 Young GC 2.2 Full GC 3 Java对象生成时的内存申请过程 3 Oracle JDK中的垃圾收集器 3 ...
- renren-fast开源项目解析日志—1、项目的部署
renren_fast项目解析日志 一.环境搭建 1.后端部署 (1)下载源码 按照步骤,从码云上down了fast,zip的(引maven项目)项目包. (2)安装lombok插件 安装lombok ...
- Android:JNI与NDK(一)
友情提示:欢迎关注本人公众号,那里有更好的阅读体验以及第一时间获取最新文章 本篇目录 以下举例代码均来自:NDK示例代码 一.前言 安卓开发中很多场景需要用到NDK来开发,比如,音视频的渲染,图像的底 ...
- 用python复制图片、视频
图片复制 f_src = open('1.jpg','rb') content = f_src.read() f_copy = open('1-副本.jpg','wb') f_copy.write(c ...
- swagger Failed to load Api definition 的问题
这个问题是由于Tomcat乱码问题导致的,修改server.xml文件的编码格式修改成UTF-8
- win10 DVWA下载安装配置(新手学渗透)
电脑重装系统了,需要重新装一下渗透测试的学习环境DVWA,借此机会就跟大家讲一下DVWA的安装过程,因为不同的电脑配置.环境不同,在我的电脑上按照我这个安装教程是一次性就安装好了的.如果安装的时候遇到 ...