数十种TensorFlow实现案例汇集:代码+笔记(转)
转:https://www.jiqizhixin.com/articles/30dc6dd9-39cd-406b-9f9e-041f5cbf1d14
这是使用 TensorFlow 实现流行的机器学习算法的教程汇集。本汇集的目标是让读者可以轻松通过案例深入 TensorFlow。
这些案例适合那些想要清晰简明的 TensorFlow 实现案例的初学者。本教程还包含了笔记和带有注解的代码。
教程索引
0 - 先决条件
机器学习入门:
MNIST 数据集入门
1 - 入门
Hello World:
基本操作:
2 - 基本模型
最近邻:
线性回归:
Logistic 回归:
3 - 神经网络
多层感知器:
卷积神经网络:
循环神经网络(LSTM):
双向循环神经网络(LSTM):
动态循环神经网络(LSTM)
自编码器
4 - 实用技术
保存和恢复模型
图和损失可视化
Tensorboard——高级可视化
5 - 多 GPU
多 GPU 上的基本操作
数据集
一些案例需要 MNIST 数据集进行训练和测试。不要担心,运行这些案例时,该数据集会被自动下载下来(使用input_data.py)。MNIST 是一个手写数字的数据库,查看这个笔记了解关于该数据集的描述:https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb
更多案例
接下来的示例来自 TFLearn,这是一个为 TensorFlow 提供了简化的接口的库。你可以看看,这里有很多示例和预构建的运算和层。
预构建的运算和层:http://tflearn.org/doc_index/#api
教程
TFLearn 快速入门。通过一个具体的机器学习任务学习 TFLearn 基础。开发和训练一个深度神经网络分类器。
基础
线性回归,使用 TFLearn 实现线性回归:https://github.com/tflearn/tflearn/blob/master/examples/basics/linear_regression.py
逻辑运算符。使用 TFLearn 实现逻辑运算符:https://github.com/tflearn/tflearn/blob/master/examples/basics/logical.py
权重保持。保存和还原一个模型:https://github.com/tflearn/tflearn/blob/master/examples/basics/weights_persistence.py
微调。在一个新任务上微调一个预训练的模型:https://github.com/tflearn/tflearn/blob/master/examples/basics/finetuning.py
使用 HDF5。使用 HDF5 处理大型数据集:https://github.com/tflearn/tflearn/blob/master/examples/basics/use_hdf5.py
使用 DASK。使用 DASK 处理大型数据集:https://github.com/tflearn/tflearn/blob/master/examples/basics/use_dask.py
计算机视觉
多层感知器。一种用于 MNIST 分类任务的多层感知实现:https://github.com/tflearn/tflearn/blob/master/examples/images/dnn.py
卷积网络(MNIST)。用于分类 MNIST 数据集的一种卷积神经网络实现:https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py
卷积网络(CIFAR-10)。用于分类 CIFAR-10 数据集的一种卷积神经网络实现:https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_cifar10.py
网络中的网络。用于分类 CIFAR-10 数据集的 Network in Network 实现:https://github.com/tflearn/tflearn/blob/master/examples/images/network_in_network.py
Alexnet。将 Alexnet 应用于 Oxford Flowers 17 分类任务:https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py
VGGNet。将 VGGNet 应用于 Oxford Flowers 17 分类任务:https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network.py
VGGNet Finetuning (Fast Training)。使用一个预训练的 VGG 网络并将其约束到你自己的数据上,以便实现快速训练:https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network_finetuning.py
RNN Pixels。使用 RNN(在像素的序列上)分类图像:https://github.com/tflearn/tflearn/blob/master/examples/images/rnn_pixels.py
Highway Network。用于分类 MNIST 数据集的 Highway Network 实现:https://github.com/tflearn/tflearn/blob/master/examples/images/highway_dnn.py
Highway Convolutional Network。用于分类 MNIST 数据集的 Highway Convolutional Network 实现:https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_highway_mnist.py
Residual Network (MNIST) (https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py).。应用于 MNIST 分类任务的一种瓶颈残差网络(bottleneck residual network):https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py
Residual Network (CIFAR-10)。应用于 CIFAR-10 分类任务的一种残差网络:https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_cifar10.py
Google Inception(v3)。应用于 Oxford Flowers 17 分类任务的谷歌 Inception v3 网络:https://github.com/tflearn/tflearn/blob/master/examples/images/googlenet.py
自编码器。用于 MNIST 手写数字的自编码器:https://github.com/tflearn/tflearn/blob/master/examples/images/autoencoder.py
自然语言处理
循环神经网络(LSTM),应用 LSTM 到 IMDB 情感数据集分类任务:https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm.py
双向 RNN(LSTM),将一个双向 LSTM 应用到 IMDB 情感数据集分类任务:https://github.com/tflearn/tflearn/blob/master/examples/nlp/bidirectional_lstm.py
动态 RNN(LSTM),利用动态 LSTM 从 IMDB 数据集分类可变长度文本:https://github.com/tflearn/tflearn/blob/master/examples/nlp/dynamic_lstm.py
城市名称生成,使用 LSTM 网络生成新的美国城市名:https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_cityname.py
莎士比亚手稿生成,使用 LSTM 网络生成新的莎士比亚手稿:https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_shakespeare.py
Seq2seq,seq2seq 循环网络的教学示例:https://github.com/tflearn/tflearn/blob/master/examples/nlp/seq2seq_example.py
CNN Seq,应用一个 1-D 卷积网络从 IMDB 情感数据集中分类词序列:https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py
强化学习
Atari Pacman 1-step Q-Learning,使用 1-step Q-learning 教一台机器玩 Atari 游戏:https://github.com/tflearn/tflearn/blob/master/examples/reinforcement_learning/atari_1step_qlearning.py
其他
Recommender-Wide&Deep Network,推荐系统中 wide & deep 网络的教学示例:https://github.com/tflearn/tflearn/blob/master/examples/others/recommender_wide_and_deep.py
Notebooks
Spiral Classification Problem,对斯坦福 CS231n spiral 分类难题的 TFLearn 实现:https://github.com/tflearn/tflearn/blob/master/examples/notebooks/spiral.ipynb
可延展的 TensorFlow
层,与 TensorFlow 一起使用 TFLearn 层:https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/layers.py
训练器,使用 TFLearn 训练器类训练任何 TensorFlow 图:https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/layers.py
Bulit-in Ops,连同 TensorFlow 使用 TFLearn built-in 操作:https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/builtin_ops.py
Summaries,连同 TensorFlow 使用 TFLearn summarizers:https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/summaries.py
Variables,连同 TensorFlow 使用 TFLearn Variables:https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/variables.py
更多精彩内容,欢迎扫码关注以下微信公众号:大数据技术宅。大数据、AI从关注开始
数十种TensorFlow实现案例汇集:代码+笔记(转)的更多相关文章
- 资源 | 数十种TensorFlow实现案例汇集:代码+笔记
选自 Github 机器之心编译 参与:吴攀.李亚洲 这是使用 TensorFlow 实现流行的机器学习算法的教程汇集.本汇集的目标是让读者可以轻松通过案例深入 TensorFlow. 这些案例适合那 ...
- 数十种TensorFlow实现案例汇集:代码+笔记
这是使用 TensorFlow 实现流行的机器学习算法的教程汇集.本汇集的目标是让读者可以轻松通过案例深入 TensorFlow. 这些案例适合那些想要清晰简明的 TensorFlow 实现案例的初学 ...
- 【hadoop代码笔记】Mapreduce shuffle过程之Map输出过程
一.概要描述 shuffle是MapReduce的一个核心过程,因此没有在前面的MapReduce作业提交的过程中描述,而是单独拿出来比较详细的描述. 根据官方的流程图示如下: 本篇文章中只是想尝试从 ...
- 【hadoop代码笔记】hadoop作业提交之汇总
一.概述 在本篇博文中,试图通过代码了解hadoop job执行的整个流程.即用户提交的mapreduce的jar文件.输入提交到hadoop的集群,并在集群中运行.重点在代码的角度描述整个流程,有些 ...
- 《SAS编程和数据挖掘商业案例》学习笔记# 19
继续<SAS编程与数据挖掘商业案例>学习笔记,本文側重数据处理实践.包含:HASH对象.自己定义format.以及功能强大的正則表達式 一:HASH对象 Hash对象又称散列表,是依据关键 ...
- Scala进阶之路-统计商家id的标签数以及TopN示例案例分析
Scala进阶之路-统计商家id的标签数以及TopN示例案例分析 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 将“temptags.txt”中的数据进行分析,统计出 ...
- 【代码笔记】Java连连看项目的实现(2)——JTable 、TableModel的使用
博客有时间就写写,所以一篇可能会拆成很多篇,写完后计划再合在一起. 首先肯定是要实现连连看的界面. 先准备连连看要的图片.. “LianLianKan”就是项目名称. 当然,如果小白看我的博客想学到什 ...
- [学习笔记] SSD代码笔记 + EifficientNet backbone 练习
SSD代码笔记 + EifficientNet backbone 练习 ssd代码完全ok了,然后用最近性能和速度都非常牛的Eifficient Net做backbone设计了自己的TinySSD网络 ...
- 《SAS编程与数据挖掘商业案例》学习笔记之十六
<SAS编程与数据挖掘商业案例>学习笔记,本次重点:sas宏变量 内容包含:宏变量.宏函数.宏參数.通配函数.字符函数.计算函数.引用函数.宏语句.宏应用 1.宏触发器: %name-to ...
随机推荐
- python全栈学习--day10(函数进阶)
一,引言 现在我有个问题,函数里面的变量,在函数外面能直接引用么? def func1(): m = 1 print(m) print(m) #这行报的错 报错了:NameError: name 'm ...
- 2017级C语言教学总结
一个学期下来,对于这门课教学还是感受挺多,多个教学平台辅助,确实和我前10年的教学方式区别很多,也辛苦很多. 一.课堂教学方面 1.课堂派预习作业 主要借助课堂派平台,每次课前发布预习作业.而预习作业 ...
- 听翁恺老师mooc笔记(11)--结构和函数
结构作为函数参数: 声明了一个结构就有了一种自定义的数据类型,这个数据类型和int.float.double一样,int等基本类型可以作为函数的参数,那么这种个自定义的结构类型也应该可以作为函数参数, ...
- C语言函函数嵌套
一.实验作业 1.1 PTA题目 设计思路 1.定义整形变量i,if(b==n-1)用于递归的终止,并返回1. 2.for i=b to n ,if(a[i]<a[min]);进行升序排序 3. ...
- Alpha冲刺No.6
站立式会议 继续页面设计 在安卓内构件数据库相应类 解决摄像头.照片的使用的异常问题 二.实际项目进展 页面设计完成百分80 类架构完成 在虚拟机中,能够完成摄像头的调用和程序的使用 三.燃尽图 四. ...
- 1013团队Beta冲刺day2
项目进展 李明皇 今天解决的进度 优化了信息详情页的布局:日期显示,添加举报按钮等 优化了程序的数据传递逻辑 明天安排 程序运行逻辑的完善 林翔 今天解决的进度 实现微信端消息发布的插入数据库 明天安 ...
- maven添加oracle驱动
由于oracle商业版权问题,maven是不可以直接下载jar包的,所以.. 先将ojdbc14.jar放到用户目录,win7放到C:\Users\Administrator然后在cmd执行 ...
- 201421123042 《Java程序设计》第10周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 结合题集题目7-1回答 1.1 自己以前编写的代码中经常出现 ...
- EMC CX4-480服务器raid磁盘数据恢复案例
[用户信息]上海某公司 [故障描述]需要进行数据恢复的设备是一台EMC CX4的存储服务器,因为硬盘出现故障导致整个存储阵列瘫痪.整个LUN是由7块1TB的硬盘组成的RAID 5.但服务器共有10块硬 ...
- EVA 4400存储硬盘故障数据恢复方案和数据恢复过程
EVA系列存储是一款以虚拟化存储为实现目的的HP中高端存储设备,平时数据会不断的迁移,加上任务通常较为繁重,所以磁盘的负载相对是较重的,也是很容易出现故障的.EVA是依靠大量磁盘的冗余空间,以及故障后 ...
