BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves' labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An). The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar's tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of
the standard input there is a single integer (2< = N < = 200000)
that denotes the number of leaves in Byteasar's tree. Next, the
description of the tree follows. The tree is defined recursively: if
there is a leaf labelled with ()(1<=P<=N) at the end of the trunk
(i.e., the branch from which the tree stems), then the tree's
description consists of a single line containing a single integer , if
there is a bifurcation at the end of the trunk, then the tree's
description consists of three parts: the first line holds a single
number , then the description of the left subtree follows (as if the
left branch forking out of the bifurcation was its trunk), and finally
the description of the right subtree follows (as if the right branch
forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and
only line of the standard output a single integer is to be printed: the
minimum number of inversions in the corona of the input tree that can be
obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3
0
0
3
1
2

Sample Output

1

首先有总的逆序对个数=左右儿子的逆序对个数+合并时的逆序对个数。
然后左右儿子的逆序对个数一定,只需要考虑合并时的逆序对个数。
可以用线段树合并上去,每次求出左右子树怎么交换会使得答案更小,然后一层一层更新即可。
注意空间要开够。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 400050
#define maxn 100000000
typedef long long ll;
int lson[N],rson[N],root[N],ls[N*40],rs[N*40],t[N*40],n,cnt,tot;
ll ans,tmp1,tmp2;
void update(int l,int r,int x,int &p) {
if(!p) p=++tot;
if(l==r) {
t[p]=1;
return ;
}
int mid=(l+r)>>1;
if(x<=mid) update(l,mid,x,ls[p]);
else update(mid+1,r,x,rs[p]);
t[p]=t[ls[p]]+t[rs[p]];
}
void build(int &p) {
int x;
p=++cnt;
scanf("%d",&x);
if(x) {
update(1,maxn,x,root[p]);
}else {
build(lson[p]); build(rson[p]);
}
}
int merge(int x,int y) {
if(!x) return y;
if(!y) return x;
tmp1+=1ll*t[ls[x]]*t[rs[y]];
tmp2+=1ll*t[rs[x]]*t[ls[y]];
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
t[x]=t[ls[x]]+t[rs[x]];
return x;
}
void dfs(int x) {
if(!lson[x]) return ;
dfs(lson[x]); dfs(rson[x]);
tmp1=0;tmp2=0;
root[x]=merge(root[lson[x]],root[rson[x]]);
ans+=min(tmp1,tmp2);
}
int main() {
scanf("%d",&n);
int tmp=1;
build(tmp);
dfs(1);
printf("%lld\n",ans);
}

BZOJ_2212_[Poi2011]Tree Rotations_线段树合并的更多相关文章

  1. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  2. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

  3. BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

    原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...

  4. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  5. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  6. bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  7. BZOJ2212【POI2011】ROT:Tree Rotation 线段树合并

    题意: 给一棵n(1≤n≤200000个叶子的二叉树,可以交换每个点的左右子树,要求叶子遍历序的逆序对最少. 分析: 求逆序对我们可以想到权值线段树,所以我们对每个点建一颗线段树(为了避免空间爆炸,采 ...

  8. [POI2011]ROT-Tree Rotations 线段树合并|主席树 / 逆序对

    题目[POI2011]ROT-Tree Rotations [Description] 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有\(n\)个叶子节点,满足这些权值为 ...

  9. 洛谷P3521 [POI2011]ROT-Tree Rotation [线段树合并]

    题目传送门 Tree Rotation 题目描述 Byteasar the gardener is growing a rare tree called Rotatus Informatikus. I ...

随机推荐

  1. CRM客户关系管理系统(十一)

    第十一章.学员报名流程开发 11.1.面包屑的制作 Boorstrap路径导航条 (1)table_obj_list.html页面面包屑 def table_obj_list 返回数据改成locals ...

  2. jQuery学习小结

    1.jQuery hide() 和 show() 通过 jQuery,您可以使用 hide() 和 show() 方法来隐藏和显示 HTML 元素: $("#hide").clic ...

  3. JqueryMobile学习记录一

    安装 做页面之前首先引用三个文件: <link href="/Scripts/jquery.mobile-1.4.5/jquery.mobile-1.4.5.css" rel ...

  4. dp,px,pt,sp 的区别 以及dp 和 px 互转

    dp = dip : device independent pixels(设备独立像素). 不同设备有不同的显示效果,这个和设备硬件有关,一般我们为了支持WVGA.HVGA和QVGA 推荐使用这个,不 ...

  5. windows系统下输入法图标显示设置

    原先任务栏有两个搜狗输入法的标志,还有一个"中/英"的图标:甚至桌面还悬浮这一个搜狗输入法图标. 打开vscode等工具时,桌面悬浮的图标有时可能会遮挡到一些信息,十分不爽. 如今 ...

  6. Python的编码风格

    1.采用四个空格作为缩进 2.一行代码不要超多79个字符 3.使用空行分割类,函数,以及大块代码 4.注释独占一行 5.使用文档字符串 6.操作符的两侧,逗号后面都要加空格(但是括号的里侧是不加的) ...

  7. .net core使用Ku.Core.Extensions.Layui实现layui表单渲染

    演示网站地址:http://layui.kulend.com/项目地址:https://github.com/kulend/Ku.Core.Extensions/tree/master/Ku.Core ...

  8. UE4学习心得:蓝图间信息通信的几种方法

    蓝图间通信是一个复杂关卡能否正常运行的关键,笔者在这里提供几种蓝图类之间的信息交互方法,希望能对读者有所帮助. 1.类引用 这是最直接的一种蓝图类之间的信息交互方式.首先在Editor中创建2个Act ...

  9. 航遇项目react踩坑

    1.iconfont应用: a.正常用法如下 <span className='iconfont' > iconfont的代码,例如: </span> b.react不能动态 ...

  10. CSS定位使用方法

    .box0 { width: 200px; height: 200px; position: relative; background: #cfa } .box0-1,.box0-2 { width: ...