AUC_shuffled.m

function [score,tp,fp] = AUC_shuffled(saliencyMap, fixationMap, otherMap, Nsplits, stepSize, toPlot)
% saliencyMap is the saliency map
% fixationMap is the human fixation map (binary matrix)
% otherMap is a binary fixation map (like fixationMap) by taking the union of
% fixations from M other random images (Borji uses M=10)
% Nsplits is number of random splits
% stepSize is for sweeping through saliency map
% if toPlot=1, displays ROC curve if nargin < 6, toPlot = 0; end
if nargin < 5, stepSize = .1; end
if nargin < 4, Nsplits = 100; end score=nan; % If there are no fixations to predict, return NaN
if ~any(fixationMap)
disp('no fixationMap');
return
end % make the saliencyMap the size of fixationMap
if size(saliencyMap, 1)~=size(fixationMap, 1) || size(saliencyMap, 2)~=size(fixationMap, 2)
saliencyMap = imresize(saliencyMap, size(fixationMap));
end % normalize saliency map
saliencyMap = (saliencyMap-min(saliencyMap(:)))/(max(saliencyMap(:))-min(saliencyMap(:))); if sum(isnan(saliencyMap(:)))==length(saliencyMap(:))
disp('NaN saliencyMap');
return
end S = saliencyMap(:);
F = fixationMap(:);
Oth = otherMap(:); Sth = S(F>0); % sal map values at fixation locations
Nfixations = length(Sth); % for each fixation, sample Nsplits values from the sal map at locations
% specified by otherMap ind = find(Oth>0); % find fixation locations on other images Nfixations_oth = min(Nfixations,length(ind));
randfix = nan(Nfixations_oth,Nsplits); for i=1:Nsplits
randind = ind(randperm(length(ind))); % randomize choice of fixation locations
randfix(:,i) = S(randind(1:Nfixations_oth)); % sal map values at random fixation locations of other random images
end % calculate AUC per random split (set of random locations)
auc = nan(1,Nsplits);
for s = 1:Nsplits curfix = randfix(:,s); allthreshes = fliplr([0:stepSize:double(max([Sth;curfix]))]);
tp = zeros(length(allthreshes)+2,1);
fp = zeros(length(allthreshes)+2,1);
tp(1)=0; tp(end) = 1;
fp(1)=0; fp(end) = 1; for i = 1:length(allthreshes)
thresh = allthreshes(i);
tp(i+1) = sum((Sth >= thresh))/Nfixations;
fp(i+1) = sum((curfix >= thresh))/Nfixations_oth;
end auc(s) = trapz(fp,tp);
end score = mean(auc); % mean across random splits if toPlot
subplot(121); imshow(saliencyMap, []); title('SaliencyMap with fixations to be predicted');
hold on;
[y, x] = find(fixationMap);
plot(x, y, '.r');
subplot(122); plot(fp, tp, '.b-'); title(['Area under ROC curve: ', num2str(score)])
end

  main.m

clear;
clc;
smap_path='E:\Dataset180303\final_data\smap_Result1\';
gmap_path='E:\Dataset180303\final_data\image_resize_gt\'; smap_file=dir(smap_path); for j=3:length(smap_file)
disp(j-2);
gmap_name=strcat(gmap_path,num2str(j-2), '.jpg');
% gmap_name=strcat(gmap_path,smap_file(j).name);
smap_name=strcat(smap_path,num2str(j-2 + 0 ), '.jpg');
% smap_name=strcat(smap_path,num2str(j-2+ 0 ), '_SaliencyMap', '.jpg');
gmap=imresize(imread(gmap_name), [224, 224], 'bicubic');
smap=imresize(imread(smap_name), [224, 224], 'bicubic');
sal_map=mat2gray(smap);
if gmap==0
continue;
end if size(gmap,3)==3
gt_final_map=rgb2gray(gmap);
else
gt_final_map = gmap;
end
sal_map=imresize(sal_map,0.5);
gt_final_map=imresize(gt_final_map,0.5); threshold_value = graythresh(gt_final_map);
gt_final_map_bin = im2bw(gt_final_map, threshold_value); % c=calcAUCscore(sal_map,gt_final_map);
% [score,tp,fp] = AUC_shuffled(saliencyMap, fixationMap, otherMap, Nsplits, stepSize, toPlot)
[c,tp,fp]=AUC_shuffled(sal_map,gt_final_map_bin,gt_final_map);
idx=find(isnan(c));
c(idx)=0.5;
c = abs(c);
a(j-2,1)=mean(c);
end
% b(i-2,1)=mean(a);
% clear a;
% end
sAUC = mean(a);

  

显著性检测(saliency detection)评价指标之sAUC(shuffled AUC)的Matlab代码实现的更多相关文章

  1. 显著性检测(saliency detection)评价指标之NSS的Matlab代码实现

    calcNSSscore.m function [ score ] = calcNSSscore( salMap, eyeMap ) %calcNSSscore Calculate NSS score ...

  2. 显著性检测(saliency detection)评价指标之KL散度距离Matlab代码实现

    步骤1:先定义KLdiv函数: function score = KLdiv(saliencyMap, fixationMap) % saliencyMap is the saliency map % ...

  3. 视觉显著性简介 Saliency Detection

    内容转移到博客文章系列:显著性检测 1.简介 视觉显著性包括从下而上和从上往下两种机制.从下而上也可以认为是数据驱动,即图像本身对人的吸引,从上而下则是在人意识控制下对图像进行注意.科研主要做的是从下 ...

  4. paper 27 :图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)

    1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual ...

  5. 视觉显著性检测(Visual saliency detection)相关概念

    视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域). 视觉注意机制(Visual Attention Mec ...

  6. (不断更新)关于显著性检测的调研-Salient Object Detection: A Survey

    <Salient Object Detection: A Survey>作者:Ali Borji.Ming-Ming Cheng.Huaizu Jiang and Jia Li 基本按照文 ...

  7. 视频显著性检测-----Predicting Video Saliency using Object-to-Motion CNN and Two-layer Convolutional LSTM

    帧内显著性检测: 将卷积网络的多层特征进行组合通过unsampling 得到粗显著性预测: 帧间显著性检测: (粗检测结果+新卷积网络的特征图,最后+之前卷积网络的卷积特征输入到LSTM中)进行预测. ...

  8. {Links}{Matting}{Saliency Detection}{Superpixel}Source links

    自然图像抠图/视频抠像技术发展情况梳理(image matting, alpha matting, video matting)--计算机视觉专题1 http://blog.csdn.net/ansh ...

  9. [精读]Spationtemporal Saliency Detection Using Textural Contrast and Its Applications

    Spationtemporal Saliency Detection Using Textural Contrast and Its Applications Last Edit 2013/12/3 ...

随机推荐

  1. java垃圾回收总结(2)

    java垃圾回收总结(2)   上一篇文章 介绍了jvm虚拟机运行时内存结构以及如何标识需要回收的对象,这一节主要讲解垃圾回收的基本算法. 基本上 jvm内存回收有三种 基本算法 标记-清除 标记清除 ...

  2. 多台或者集群环境下如何保证spring定时器只执行一个

    先说一下我们的系统, 在65和66上分别部署有weblogic节点,共计四个,在项目中我们的定时器会隔一段时间就从其它的五个系统中取数据,这时就出现了问题,本来取一次数据就可以的,现在重复执行了三次, ...

  3. 新知识:JQuery语法基础与操作

     jQuery是一个快速.简洁的JavaScript框架,是继Prototype之后又一个优秀的JavaScript代码库(或JavaScript框架).jQuery设计的宗旨是"write ...

  4. FFPLAY的原理

    概要 电影文件有很多基本的组成部分.首先,文件本身被称为容器Container,容器的类型决定了信息被存放在文件中的位置.AVI和Quicktime就是容器的例子.接着,你有一组流,例如,你经常有的是 ...

  5. codeforces——961C. Chessboard

    本文是博主原创文章,未经允许不得转载. 我在csdn也同步发布了此文,链接 https://blog.csdn.net/umbrellalalalala/article/details/7989225 ...

  6. SEO优化-robots.txt解读

    一.什么是robots.txt robots.txt 文件由一条或多条规则组成.每条规则可禁止(或允许)特定抓取工具抓取相应网站中的指定文件路径. 通俗一点的说法就是:告诉爬虫,我这个网站,你哪些能看 ...

  7. SpringBoot jar包中资源加载问题

    在IDE下调试怎么也没有发现问题,但是部署到服务器上,提示找不到资源,找了半天资料总算是找到了原因: Jar包中的资源加载不能使用File方式,只能使用InputStream方式读取.知道原因就好解决 ...

  8. 想要薪资20-30K,Python程序员认真敲代码就够了!

    在这个年代,互联网的飞速壮大大家有目共睹,除了表露出的公共受益,其中计算机编程者也是做出了巨大的贡献,即使外国编程语言仍旧属于领导者,但是在互联网的壮大下,我们这是"地球村",国内 ...

  9. STL-Map 源码剖析

    G++ ,cygnus\cygwin-b20\include\g++\stl_map.h 完整列表 /* * * Copyright (c) 1994 * Hewlett-Packard Compan ...

  10. Mybatis夺标关联查询一对多实例

    <?xml version="1.0" encoding="UTF-8" ?>  <!DOCTYPE mapper PUBLIC " ...