在Spark的Rdd中,Rdd是分区的。

有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区。或者需要把Rdd的分区数量调大。还有就是通过设置一个Rdd的分区来达到设置生成的文件的数量。

有两种方法是可以重设Rdd的分区:分别是 coalesce()方法和repartition()。

这两个方法有什么区别,看看源码就知道了:coalesce只能减少分区,而repartition可以减少和增加

  def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null)
: RDD[T] = withScope {
if (shuffle) {
/** Distributes elements evenly across output partitions, starting from a random partition. */
val distributePartition = (index: Int, items: Iterator[T]) => {
var position = (new Random(index)).nextInt(numPartitions)
items.map { t =>
// Note that the hash code of the key will just be the key itself. The HashPartitioner
// will mod it with the number of total partitions.
position = position + 1
(position, t)
}
} : Iterator[(Int, T)] // include a shuffle step so that our upstream tasks are still distributed
new CoalescedRDD(
new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition),
new HashPartitioner(numPartitions)),
numPartitions).values
} else {
new CoalescedRDD(this, numPartitions)
}
}

coalesce()方法的作用是返回指定一个新的指定分区的Rdd。

如果是生成一个窄依赖的结果,那么不会发生shuffle。比如:1000个分区被重新设置成10个分区,这样不会发生shuffle。

关于Rdd的依赖,这里提一下。Rdd的依赖分为两种:窄依赖和宽依赖。

窄依赖是指父Rdd的分区最多只能被一个子Rdd的分区所引用,即一个父Rdd的分区对应一个子Rdd的分区,或者多个父Rdd的分区对应一个子Rdd的分区。

而宽依赖就是宽依赖是指子RDD的分区依赖于父RDD的多个分区或所有分区,即存在一个父RDD的一个分区对应一个子RDD的多个分区。1个父RDD分区对应多个子RDD分区,这其中又分两种情况:1个父RDD对应所有子RDD分区(未经协同划分的Join)或者1个父RDD对应非全部的多个RDD分区(如groupByKey)。

如下图所示:map就是一种窄依赖,而join则会导致宽依赖

回到刚才的分区,如果分区的数量发生激烈的变化,如设置numPartitions = 1,这可能会造成运行计算的节点比你想象的要少,为了避免这个情况,可以设置shuffle=true,

那么这会增加shuffle操作。

关于这个分区的激烈的变化情况,比如分区数量从父Rdd的几千个分区设置成几个,有可能会遇到这么一个错误。

Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 77.0 failed 4 times, most recent failure: Lost task 1.3 in stage 77.0 (TID 6334, 192.168.8.61): java.io.IOException: Unable to acquire 16777216 bytes of memory
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPage(UnsafeExternalSorter.java:351)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPageIfNecessary(UnsafeExternalSorter.java:332)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.insertKVRecord(UnsafeExternalSorter.java:461)
at org.apache.spark.sql.execution.UnsafeKVExternalSorter.insertKV(UnsafeKVExternalSorter.java:139)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.switchToSortBasedAggregation(TungstenAggregationIterator.scala:489)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:379)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.start(TungstenAggregationIterator.scala:622)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1.org$apache$spark$sql$execution$aggregate$TungstenAggregate$$anonfun$$executePartition$1(TungstenAggregate.scala:110)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
at org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:64)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:63)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:63)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:99)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:87)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:96)
at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:95)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at org.apache.spark.util.collection.ExternalSorter.insertAll(ExternalSorter.scala:209)
at org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)

这个错误只要把shuffle设置成true即可解决。

当把父Rdd的分区数量增大时,比如Rdd的分区是100,设置成1000,如果shuffle为false,并不会起作用。

这时候就需要设置shuffle为true了,那么Rdd将在shuffle之后返回一个1000个分区的Rdd,数据分区方式默认是采用 hash partitioner。

最后来看看repartition()方法的源码:

  def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
coalesce(numPartitions, shuffle = true)
}

从源码可以看出,repartition()方法就是coalesce()方法shuffle为true的情况。

如有错误遗漏的地方,请不吝赐教。

Spark Rdd coalesce()方法和repartition()方法的更多相关文章

  1. ASP.NET Core 中文文档 第二章 指南(4.10)检查自动生成的Detail方法和Delete方法

    原文 Examining the Details and Delete methods 作者 Rick Anderson 翻译 谢炀(Kiler) 校对 许登洋(Seay).姚阿勇(Mr.Yao) 打 ...

  2. ThinkPHP的D方法和M方法的区别

    M方法和D方法的区别 ThinkPHP 中M方法和D方法都用于实例化一个模型类,M方法 用于高效实例化一个基础模型类,而 D方法 用于实例化一个用户定义模型类. 使用M方法 如果是如下情况,请考虑使用 ...

  3. Hibernate中evict方法和clear方法说明

    Hibernate中evict方法和clear方法说明 先创建一个对象,然后调用session.save方法,然后调用evict方法把该对象清除出缓存,最后提交事务.结果报错: Exception i ...

  4. Android HTTP实例 使用GET方法和POST方法发送请求

    Android HTTP实例 使用GET方法和POST方法发送请求 Web程序:使用GET和POST方法发送请求 首先利用MyEclispe+Tomcat写好一个Web程序,实现的功能就是提交用户信息 ...

  5. virtual方法和abstract方法

    在C#的学习中,容易混淆virtual方法和abstract方法的使用,现在来讨论一下二者的区别.二者都牵涉到在派生类中与override的配合使用. 一.Virtual方法(虚方法) virtual ...

  6. JavaScript indexOf() 方法和 lastIndexOf() 方法

    一,定义和用法 indexOf() 方法可返回某个指定的字符串值在字符串中首次出现的位置. lastIndexOf() 方法可返回一个指定的字符串值最后出现的位置,在一个字符串中的指定位置从后向前搜索 ...

  7. wait方法和sleep方法的区别

    一.概念.原理.区别 Java中的多线程是一种抢占式的机制而不是分时机制.线程主要有以下几种状态:可运行,运行,阻塞,死亡.抢占式机制指的是有多个线程处于可运行状态,但是只有一个线程在运行.      ...

  8. M方法和D方法的区别

    M方法和D方法的区别 ThinkPHP 中M方法和D方法都用于实例化一个模型类,M方法 用于高效实例化一个基础模型类,而 D方法 用于实例化一个用户定义模型类. 使用M方法 如果是如下情况,请考虑使用 ...

  9. ThinkPHP 中M方法和D方法详解----转载

    转载的地址,http://blog.163.com/litianyichuanqi@126/blog/static/115979441201223043452383/ 自己学到这里的时候,不能清除的分 ...

随机推荐

  1. .NET Core Windows环境安装与体验

    1.安装.NET Core SDK 在windows下开发.NET Core最好使用Visual Studio工具.下载地址与安装: VS2015最新版本:Visual Studio 2015 Upd ...

  2. 通过NPOI操作Excel

    最近在做的一个项目中需要生成Excel,通过学习使用NPOI实现了相关需求,写了一个简便操作的类,记录如下: public class NPOIHelperForExcel { #region exc ...

  3. Effective前端4:尽可能地使用伪元素

    伪元素是一个好东西,但是很多人都没怎么用,因为他们觉得伪元素太诡异了.其实使用伪元素有很多好处,最大的好处是它可以简化页面的html标签,同时用起来也很方便,善于使用伪元素可以让你的页面更加地简洁优雅 ...

  4. [占位-未完成]scikit-learn一般实例之十一:异构数据源的特征联合

    [占位-未完成]scikit-learn一般实例之十一:异构数据源的特征联合 Datasets can often contain components of that require differe ...

  5. C++异常处理:try,catch,throw,finally的用法

    写在前面 所谓异常处理,即让一个程序运行时遇到自己无法处理的错误时抛出一个异常,希望调用者可以发现处理问题. 异常处理的基本思想是简化程序的错误代码,为程序键壮性提供一个标准检测机制. 也许我们已经使 ...

  6. STM32 NVIC配置详解

    例程:  /* Configure one bit for preemption priority */  NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1) ...

  7. 学习EF之贪婪加载和延迟加载(1)

    从暑假开始接触code first以来,一直感觉很好用,主要在于开发过程中以业务为中心可以随时修改数据模型生成数据库,还有一个原因就是查询起来很方便 这里找了一个以前database first的一段 ...

  8. 设计模式(十一)外观模式(Facade Pattern)

    一.引言 在软件开发过程中,客户端程序经常会与复杂系统的内部子系统进行耦合,从而导致客户端程序随着子系统的变化而变化,然而为了将复杂系统的内部子系统与客户端之间的依赖解耦,从而就有了外观模式,也称作 ...

  9. 设计模式03备忘录(java)

    先贴代码有空来写内容. 备忘录1 //简单的备忘录,只可以记录上一次修改前的状态,实现撤回一次的操作. class Student{ private String name; private Stri ...

  10. Quartz框架(第一版)

    任务调度 在企业级应用中,经常会制定一些"计划任务",即在某个时间点做某件事情 核心是以时间为关注点,即在一个特定的时间点,系统执行指定的一个操作 任务调度涉及多线程并发.线程池维 ...