贝叶斯、朴素贝叶斯及调用spark官网 mllib NavieBayes示例
贝叶斯定理便是基于下述贝叶斯公式:
P(B|A)随着P(B)和P(A|B)的增长而增长,随着P(A)的增长而减少,即如果A独立于B时被观察到的可能性越大,那么A对B的支持度越小
朴素贝叶斯
朴素贝叶斯算法是假设各个特征之间相互独立,使用贝叶斯公式进行分类的。请参考:https://blog.csdn.net/amds123/article/details/70173402
spark NavieBayes 官方示例代码如下:
import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.sql.SparkSession object NavieBayesDemo {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.appName("NavieBayesDemo").master("local")
.config("spark.sql.warehouse.dir", "C:\\study\\sparktest")
.getOrCreate()
// Load the data stored in LIBSVM format as a DataFrame.
val dataset=spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
// Split the data into training and test sets (30% held out for testing)
val Array(tranningData,testData)=dataset.randomSplit(Array(0.7,0.3),seed = 1234L) // Train a NavieBayes model
val model = new NaiveBayes().fit(tranningData)
// Select example rows to display.
val predictions=model.transform(testData)
predictions.show() // Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val accuracy = evaluator.evaluate(predictions)
println(s"Test set accuracy = $accuracy") spark.stop()
}
}
运行结果如下:
Test set accuracy = 1.0
贝叶斯、朴素贝叶斯及调用spark官网 mllib NavieBayes示例的更多相关文章
- 模式识别之贝叶斯---朴素贝叶斯(naive bayes)算法及实现
处女文献给我最喜欢的算法了 ⊙▽⊙ ---------------------------------------------------我是机智的分割线----------------------- ...
- Spark官网资料学习网址
百度搜索Spark: 这一个是Spark的官网网址,你可以在上面下载相关的安装包等等. 这一个是最新的Spark的文档说明,你可以查看如何安装,如何编程,以及含有对应的学习资料.
- Spark官网
Components Spark applications run as independent sets of processes on a cluster, coordinated by the ...
- Spark 官网提到的几点调优
1. 数据序列化 默认使用的是Java自带的序列化机制.优点是可以处理所有实现了java.io.Serializable 的类.但是Java 序列化比较慢. 可以使用Kryo序列化机制,通常比Java ...
- Logistic 最大熵 朴素贝叶斯 HMM MEMM CRF 几个模型的总结
朴素贝叶斯(NB) , 最大熵(MaxEnt) (逻辑回归, LR), 因马尔科夫模型(HMM), 最大熵马尔科夫模型(MEMM), 条件随机场(CRF) 这几个模型之间有千丝万缕的联系,本文首先会 ...
- 【机器学习实战】第4章 朴素贝叶斯(Naive Bayes)
第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们 ...
- 【sklearn朴素贝叶斯算法】高斯分布/多项式/伯努利贝叶斯算法以及代码实例
朴素贝叶斯 朴素贝叶斯方法是一组基于贝叶斯定理的监督学习算法,其"朴素"假设是:给定类别变量的每一对特征之间条件独立.贝叶斯定理描述了如下关系: 给定类别变量\(y\)以及属性值向 ...
- 调用spark API,监控任务的进度
我们现在需要监控datapre0这个任务每一次执行的进度,操作如下: 1. 如图所示,打开spark管理页面,找到对应的任务,点击任务名datapre0 2. 进去之后,获得对应IP和端口 3. 访 ...
- 朴素贝叶斯算法源码分析及代码实战【python sklearn/spark ML】
一.简介 贝叶斯定理是关于随机事件A和事件B的条件概率的一个定理.通常在事件A发生的前提下事件B发生的概率,与在事件B发生的前提下事件A发生的概率是不一致的.然而,这两者之间有确定的关系,贝叶斯定理就 ...
随机推荐
- Spherical CNNs代码配置过程
ICLR18 best paper: Spherical CNNs 论文链接:https://arxiv.org/abs/1801.10130 GITHUB地址:https://github.com/ ...
- Github Page搜索工具更新 - 探索功能
探索功能提供了一种快速访问有意思的Github Page的途径,每周探索功能会更新有趣的搜索词条,你可以点击感兴趣的词条来获取该词条对应的Github Page. 首批Github Page探索词条包 ...
- Apache HTTP 服务器 2.4(又名httpd)安装\配置 \启动
Apache HTTP 服务器 2.4 源文档
- 2015219付颖卓《网络对抗》EXP8 Web基础
实验后回答问题 1.什么是表单 来自百度百科的官方定义:表单在网页中主要负责数据采集功能.一个表单有三个基本组成部分: 表单标签:这里面包含了处理表单数据所用CGI程序的URL以及数据提交到服务器的方 ...
- Win10激活密钥key(可激活所有版本)
Win10激活密钥key(可激活所有版本) Win10一年的免费升级服务已经到期,用户要使用Win10系统,就需要最新Win10密钥来激活Win10,一般激活Win10系统有两种方式,一个是使用Win ...
- 3.go语言的转译字符
go语言的转译字符 \a 匹配响铃符 (相当于 \x07) 注意:正则表达式中不能使用 \b 匹配退格符,因为 \b 被用来匹配单词边界, 可以使用 \x08 表示退格符. \f 匹配换页符 (相当于 ...
- Ubuntu网络不通解决办法
如下问题: 尝试和Host主机互ping也不通, Ubuntu: vmware 桥接模式 IP:192.168.1.202/24 gateway:192.168.1.1 Host主机:网络正常 IP: ...
- JavaScript对象(第四天)
面向对象编程中,JavaScript并不完全具备封装.继承.多态:在JavaScript中,对象是一个无序的键值对集合 封装JavaScript是具备的,将属性和方法定义到对象内部: 继承,在java ...
- Python每日练习汇总
练习1 2019-3-19# 写一个函数实现99乘法表 def x99(x): if x >=1 and x <=9: line = 1 while line <= x: start ...
- TemplatePart特性的作用
看wp控件的源代码时发现TemplatePart特性,于是在百度上查了查: http://blog.csdn.net/wushang923/article/details/9224533 Templa ...