(predicted == labels).sum().item()作用
⚠️(predicted == labels).sum().item()作用,举个小例子介绍:
# -*- coding: utf-8 -*-
import torch
import numpy as np data1 = np.array([
[1,2,3],
[2,3,4]
])
data1_torch = torch.from_numpy(data1) data2 = np.array([
[1,2,3],
[2,3,4]
])
data2_torch = torch.from_numpy(data2) p = (data1_torch == data2_torch) #对比后相同的值会为1,不同则会为0
print p
print type(p) d1 = p.sum() #将所有的值相加,得到的仍是tensor类别的int值
print d1
print type(d1) d2 = d1.item() #转成python数字
print d2
print type(d2)
返回:
(deeplearning2) userdeMBP:pytorch user$ python test.py
tensor([[1, 1, 1],
[1, 1, 1]], dtype=torch.uint8)
<class 'torch.Tensor'>
tensor(6)
<class 'torch.Tensor'>
6
<type 'int'>
即如果有不同的话,会变成:
# -*- coding: utf-8 -*-
import torch
import numpy as np data1 = np.array([
[,,],
[,,]
])
data1_torch = torch.from_numpy(data1) data2 = np.array([
[,,],
[,,]
])
data2_torch = torch.from_numpy(data2) p = (data1_torch == data2_torch)
print p
print type(p) d1 = p.sum()
print d1
print type(d1) d2 = d1.item()
print d2
print type(d2)
返回:
(deeplearning2) userdeMBP:pytorch user$ python test.py
tensor([[, , ],
[, , ]], dtype=torch.uint8)
<class 'torch.Tensor'>
tensor()
<class 'torch.Tensor'> <type 'int'>
(predicted == labels).sum().item()作用的更多相关文章
- 测试准确率计算方法说明 pre.eq(target).float().sum().item()
测试准确率计算方法说明 pre.eq(target).float().sum().item() 待办 pred = logits.argmax(dim=1) correct += pred.eq(ta ...
- document.all.item作用
1.document.all.myCheckBox和 document.all.item通过控件的名字定位控件,item()中是控件的名字例如:<input type="checkbo ...
- pytorch例子学习——TRAINING A CLASSIFIER
参考:https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar1 ...
- Note | PyTorch官方教程学习笔记
目录 1. 快速入门PYTORCH 1.1. 什么是PyTorch 1.1.1. 基础概念 1.1.2. 与NumPy之间的桥梁 1.2. Autograd: Automatic Differenti ...
- 【PyTorch v1.1.0文档研习】60分钟快速上手
阅读文档:使用 PyTorch 进行深度学习:60分钟快速入门. 本教程的目标是: 总体上理解 PyTorch 的张量库和神经网络 训练一个小的神经网络来进行图像分类 PyTorch 是个啥? 这是基 ...
- 60 分钟极速入门 PyTorch
2017 年初,Facebook 在机器学习和科学计算工具 Torch 的基础上,针对 Python 语言发布了一个全新的机器学习工具包 PyTorch. 因其在灵活性.易用性.速度方面的优秀表现,经 ...
- 003-simonyanVeryDeepConvolutional2015(VGG)
Very Deep Convolutional Networks for Large-Scale Image Recognition #paper 1. paper-info 1.1 Metadata ...
- 【项目实战】kaggle产品分类挑战
多分类特征的学习 这里还是b站刘二大人的视频课代码,视频链接:https://www.bilibili.com/video/BV1Y7411d7Ys?p=9 相关注释已经标明了(就当是笔记),因此在这 ...
- 学习笔记-ResNet网络
ResNet网络 ResNet原理和实现 总结 一.ResNet原理和实现 神经网络第一次出现在1998年,当时用5层的全连接网络LetNet实现了手写数字识别,现在这个模型已经是神经网络界的“hel ...
随机推荐
- css 两段对齐和超出部分...
.cont-detail ul li { display: -webkit-flex; display: -ms-flexbox; display: flex; -webkit-box-pack: j ...
- es6 语法 (数组扩展)
{ let arr = Array.of(3, 4, 7, 9, 11); console.log('arr', arr); //[3,4,7,9,11] let empty = Array.of() ...
- 2018-09-24 Java源码英翻中网页演示
在线演示地址: 源代码翻译 两部分如下. 独立的Java代码翻译库 续前文代码翻译尝试-使用Roaster解析和生成Java源码 源码库: program-in-chinese/java_code_t ...
- 【代码笔记】Web-JavaScript-Javascript对象
一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...
- Linux 进程调度的主要策略
1.Linux 下进程分为5种类别,分别是停止类.截止类.实时类.公平类.空闲类, 每种类别都有一个运行队列,每次调度时,就是先按照类别优先级排序,再按照每个类别内的最高优先级任务调度运行. 文件:c ...
- 生产环境下JVM调优参数的设置实例
JVM基础:生产环境参数实例及分析 原始配置: -Xms128m -Xmx128m -XX:NewSize=64m -XX:PermSize=64m -XX:+UseConcMarkSweepGC - ...
- Velodyne VLP-16 gmapping 建图
1. 测试环境 Ubuntu 16.04 x64.ROS Kinetic.Velodyne VLP-16.RoboWare Studio 2. 安装 ROS 功能包 sudo apt-get inst ...
- matlab练习程序(地图上画经纬度)
需要看下生成的数据在地球上的经纬度具体位置. 投影为墨卡托投影. clear all; close all; clc; load coast; a=load('out.txt'); %自己的经纬度 ...
- 一个解决过程:Servlet [某路径xxx] in web application [/项目xxx] threw load() exception和java.lang.ClassNotFoundException XXX
Servlet [某路径xxx] in web application [/项目xxx] threw load() exception和java.lang.ClassNotFoundException ...
- weblogic---- Remote远程调用
删之前重新写一下以防以后遗忘 一.服务器端 package com.ij34.dao; import javax.ejb.Remote; /** * @author Admin * @date 创建时 ...