package com.shundong.utils;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List; /**
* 一个只能处理26个字母的单词树(trie)
* 空间换时间 T(n) = O(n)
* ps:如果缺陷 欢迎留言
* @author shundong
* @data 2018-10-13
*/ public class FindWordsTrie{
//一个Trie树有一个根节点
private Vertex root; //内部类or节点类
protected class Vertex{
protected int words;
protected int prefixes;
//每个节点包含26个子节点(类型为自身)
protected Vertex[] edges;
Vertex() {
words = 0;
prefixes = 0;
edges = new Vertex[26];
for (int i = 0; i < edges.length; i++) {
edges[i] = null;
}
}
} public FindWordsTrie () {
root = new Vertex();
} /**
* 列出List所有单词
* @return
*/
public List< String> listAllWords() { List< String> words = new ArrayList< String>();
Vertex[] edges = root.edges; for (int i = 0; i < edges.length; i++) {
if (edges[i] != null) {
String word = "" + (char)('a' + i);
depthFirstSearchWords(words, edges[i], word);
}
}
return words;
} /**
* Depth First在Trie中搜索单词并将它们添加到List中。
* @param words
* @param vertex
* @param wordSegment
*/
private void depthFirstSearchWords(List words, Vertex vertex, String wordSegment) {
Vertex[] edges = vertex.edges;
boolean hasChildren = false;
for (int i = 0; i < edges.length; i++) {
if (edges[i] != null) {
hasChildren = true;
String newWord = wordSegment + (char)('a' + i);
depthFirstSearchWords(words, edges[i], newWord);
}
}
if (!hasChildren) {
words.add(wordSegment);
}
} public int countPrefixes(String prefix) {
return countPrefixes(root, prefix);
} private int countPrefixes(Vertex vertex, String prefixSegment) {
if (prefixSegment.length() == 0) { //到达单词的最后一个字符
return vertex.prefixes;
}
char c = prefixSegment.charAt(0);
int index = c - 'a';
if (vertex.edges[index] == null) { // 这个词不存在
return 0;
} else {
return countPrefixes(vertex.edges[index], prefixSegment.substring(1));
}
} public int countWords(String word) {
return countWords(root, word);
} private int countWords(Vertex vertex, String wordSegment) {
if (wordSegment.length() == 0) { //到达单词的最后一个字符
return vertex.words;
}
char c = wordSegment.charAt(0);
int index = c - 'a';
if (vertex.edges[index] == null) { // 这个词不存在
return 0;
} else {
return countWords(vertex.edges[index], wordSegment.substring(1));
} }
/**
* 在Trie上添加一个单词
* @param word 要添加的词
*/
public void addWord(String word) {
addWord(root, word);
}
/**
* 添加指定顶点的单词
* @param vertex 指定的顶点
* @param word 要添加的词
*/
private void addWord(Vertex vertex, String word) {
if (word.length() == 0) { //如果已添加该单词的所有字符
vertex.words ++;
} else {
vertex.prefixes ++;
char c = word.charAt(0);
c = Character.toLowerCase(c);
int index = c - 'a';
if (vertex.edges[index] == null) { //如果边缘不存在
vertex.edges[index] = new Vertex();
}
addWord(vertex.edges[index], word.substring(1)); //去下一个
}
}
//简单的测试测试
public static void main(String args[])
{
FindWordsTrie trie = new FindWordsTrie();
trie.addWord("cabbage");
trie.addWord("cabbage");
trie.addWord("cabbage");
trie.addWord("cabbage");
trie.addWord("cabin");
trie.addWord("berte");
trie.addWord("cabbage");
trie.addWord("english");
trie.addWord("establish");
trie.addWord("good"); // System.out.println(trie.root.prefixes);
// System.out.println(trie.root.words);
// List< String> list = trie.listAllWords();
// Iterator listiterator = list.listIterator();
// //遍历
// while(listiterator.hasNext())
// {
// String str = (String)listiterator.next();
// System.out.println(str);
// }
int count = trie.countPrefixes("c");//此处传参
int count1=trie.countWords("cabbage");
System.err.println("单词c 前缀个数为:"+count);
System.err.println("cabbage 单词的个数为:"+count1);
}
}

  

Java实现单词树(trie)的更多相关文章

  1. Java数据结构——字典树TRIE

    又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种. 典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计. 它的优点是:利用字符串的公共 ...

  2. K:单词查找树(Trie)

      单词查找树,又称前缀树或字典树,是一种有序树,用于保存关联数组,其中的键通常是字符串.Trie可以看作是一个确定有限状态自动机(DFA).与二叉查找树不同,键不是直接保存在节点中,而是由节点在树中 ...

  3. 字典树(Trie树)的实现及应用

    >>字典树的概念 Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树.与二叉查找树不同,Trie树的 ...

  4. Atitit 常见的树形结构 红黑树  二叉树   B树 B+树  Trie树 attilax理解与总结

    Atitit 常见的树形结构 红黑树  二叉树   B树 B+树  Trie树 attilax理解与总结 1.1. 树形结构-- 一对多的关系1 1.2. 树的相关术语: 1 1.3. 常见的树形结构 ...

  5. 字典树trie的学习与练习题

    博客详解: http://www.cnblogs.com/huangxincheng/archive/2012/11/25/2788268.html http://eriol.iteye.com/bl ...

  6. 『字典树 trie』

    字典树 (trie) 字典树,又名\(trie\)树,是一种用于实现字符串快速检索的树形数据结构.核心思想为利用若干字符串的公共前缀来节约储存空间以及实现快速检索. \(trie\)树可以在\(O(( ...

  7. 字典树trie学习

    字典树trie的思想就是利用节点来记录单词,这样重复的单词可以很快速统计,单词也可以快速的索引.缺点是内存消耗大 http://blog.csdn.net/chenleixing/article/de ...

  8. 字典树Trie的使用

    1. Trie树介绍 Trie,又称单词查找树.前缀树,是一种多叉树结构.如下图所示: 上图是一棵Trie树,表示了关键字集合{“a”, “to”, “tea”, “ted”, “ten”, “i”, ...

  9. 字典树(Trie)详解

    详解字典树(Trie) 本篇随笔简单讲解一下信息学奥林匹克竞赛中的较为常用的数据结构--字典树.字典树也叫Trie树.前缀树.顾名思义,它是一种针对字符串进行维护的数据结构.并且,它的用途超级广泛.建 ...

随机推荐

  1. Git秘钥生成以及Gitlab配置

    安装Git:详见http://www.cnblogs.com/xiuxingzhe/p/9300905.html 开通gitlab(开通需要咨询所在公司的gitlab管理员)账号后,本地Git仓库和g ...

  2. BZOJ3224普通平衡树——旋转treap

    题目: 此为平衡树系列第一道:普通平衡树您需要写一种数据结构,来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除一个)3. 查询x数的排名(若有多个相同的数, ...

  3. 第二十二天 logging hashlib re 模块

    今日内容 logging功能完善的日志模块 re正则表达式模块主要处理字符串匹配 查找 搜索给你一个字符串 要从中找到你需要的东西 爬虫大量使用 hashlib hash算法相关的库 算法怎么算不需要 ...

  4. 学习Android过程中遇到的问题及解决方法——电话监听

    也许有时你会有这样一个需求:通电话时有一个重要的事需要记下来或者和一个陌生人特别是大骗子通话时,这是就想如果能把通话录下来就方便多了.(这才是我写这个代码的目的!!!) 在此过程中,犯了一个很大的错误 ...

  5. 数据分析---用pandas进行数据清洗(Data Analysis Pandas Data Munging/Wrangling)

    这里利用ben的项目(https://github.com/ben519/DataWrangling/blob/master/Python/README.md),在此基础上增添了一些内容,来演示数据清 ...

  6. CODEFORCES掉RATING记 #2

    比赛:Codeforces Round #425 (Div. 2) 时间:2017.7.25晚 先orz zjt rank4 一场加300rating A:傻题,判断\(\lfloor\frac{n} ...

  7. git errot

    常用 git 基础命令 1.错误信息 使用TortoiseGit执行pull命令时显示 git.exe pull --progress --no-rebase -v "origin" ...

  8. 设置Linux防火墙

    设置 Linux 服务器防火墙脚本,Web_iptables.sh 通过内网可访问服务器所有开放端口 给跳板机开放sshd端口连接服务器 信任ip 所有端口均开放 开放部分端口供外部访问 #!/bin ...

  9. [luogu4139]上帝与集合的正确用法【欧拉定理+扩展欧拉定理】

    题目大意 让你求\(2^{2^{2^{\cdots}}}(mod)P\)的值. 前置知识 知识1:无限次幂怎么解决 让我们先来看一道全国数学竞赛的一道水题: 让你求解:\(x^{x^{x^{\cdot ...

  10. VSIX 插件右键菜单(2)

    编译项目然后发布 // 获取当前右击的活动项目 EnvDTE.Project activeProj = ProjectHelpers.GetActiveProject(); // 获取 编译选项 Re ...