Java并发编程-Semaphore
基于AQS的前世今生,来学习并发工具类Semaphore。本文将从Semaphore的应用场景、源码原理解析来学习这个并发工具类。
1、 应用场景
Semaphore用来控制同时访问某个特定资源的操作数量,或者同时执行某个指定操作的数量。还可以用来实现某种资源池限制,或者对容器施加边界。
1.1 当成锁使用
控制同时访问某个特定资源的操作数量,代码如下:
public class SemaphoreLock {
public static void main(String[] args) {
//1、信号量为1时 相当于普通的锁 信号量大于1时 共享锁
Output o = new Output();
for (int i = 0; i < 5; i++) {
new Thread(() -> o.output()).start();
}
}
}
class Output {
Semaphore semaphore = new Semaphore(1); public void output() {
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + " start at " + System.currentTimeMillis());
Thread.sleep(1000);
System.out.println(Thread.currentThread().getName() + " stop at " + System.currentTimeMillis());
}catch(Exception e) {
e.printStackTrace();
}finally {
semaphore.release();
}
}
}
1.2 线程通信信号
线程间通信,代码如下:
public class SemaphoreCommunication {
public static void main(String[] args) {
//2、线程间进行通信
Semaphore semaphore = new Semaphore(1);
new SendingThread(semaphore,"SendingThread");
new ReceivingThread(semaphore,"ReceivingThread");
}
}
class SendingThread extends Thread {
Semaphore semaphore;
String name; public SendingThread(Semaphore semaphore,String name) {
this.semaphore = semaphore;
this.name = name;
new Thread(this).start();
} public void run() {
try {
semaphore.acquire();
for (int i = 0; i < 5; i++) {
System.out.println(name + ":" + i);
Thread.sleep(1000);
}
} catch (Exception e) {
e.printStackTrace();
}
semaphore.release();
}
} class ReceivingThread extends Thread {
Semaphore semaphore;
String name; public ReceivingThread(Semaphore semaphore,String name) {
this.semaphore = semaphore;
this.name = name;
new Thread(this).start();
} public void run() {
try {
semaphore.acquire();
for (int i = 0; i < 5; i++) {
System.out.println(name + ":" + i);
Thread.sleep(1000);
}
} catch (Exception e) {
e.printStackTrace();
}
semaphore.release();
}
}
1.3 资源池限制
对资源池进行资源限制,代码如下:
public class SemaphoreConnect {
public static void main(String[] args) throws Exception {
//3、模拟连接池数量限制
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < 200; i++) {
executorService.submit(new Runnable() {
@Override
public void run() {
Connection.getInstance().connect();
}
});
}
executorService.shutdown();
executorService.awaitTermination(1, TimeUnit.DAYS);
}
}
class Connection {
private static Connection instance = new Connection();
private Semaphore semaphores = new Semaphore(10,true);
private int connections = 0; private Connection() {
} public static Connection getInstance() {
return instance;
} public void connect() {
try {
semaphores.acquire();
doConnect();
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
semaphores.release();
}
} private void doConnect() {
synchronized (this) {
connections ++;
System.out.println("current get connections is : " + connections);
} try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
} synchronized (this) {
connections --;
System.out.println("after release current connections is : " + connections);
}
}
}
1.4 容器边界限制
对容器进行边界限制,代码如下:
public class SemaphoreBoundedList {
public static void main(String[] args) {
//4、容器边界限制
final BoundedList ba = new BoundedList(5);
Runnable runnable1 = new Runnable() {
public void run() {
try {
ba.add("John");
ba.add("Martin");
ba.add("Adam");
ba.add("Prince");
ba.add("Tod");
System.out.println("Available Permits : " + ba.getSemaphore().availablePermits());
ba.add("Tony");
System.out.println("Final list: " + ba.getArrayList());
}catch (InterruptedException ie) {
Thread.interrupted();
}
}
};
Runnable runnable2 = new Runnable() {
public void run() {
try {
System.out.println("Before removing elements: "+ ba.getArrayList());
Thread.sleep(5000);
ba.remove("Martin");
ba.remove("Adam");
}catch (InterruptedException ie) {
Thread.interrupted();
}
}
};
Thread thread1 = new Thread(runnable1);
Thread thread2 = new Thread(runnable2);
thread1.start();
thread2.start();
}
}
class BoundedList<T> {
private final Semaphore semaphore;
private List arrayList; BoundedList(int limit) {
this.arrayList = Collections.synchronizedList(new ArrayList());
this.semaphore = new Semaphore(limit);
} public boolean add(T t) throws InterruptedException {
boolean added = false;
semaphore.acquire();
try {
added = arrayList.add(t);
return added;
} finally {
if (!added)
semaphore.release();
} } public boolean remove(T t) {
boolean wasRemoved = arrayList.remove(t);
if (wasRemoved)
semaphore.release();
return wasRemoved;
} public void remove(int index) {
arrayList.remove(index);
semaphore.release();
} public List getArrayList() {
return arrayList;
} public Semaphore getSemaphore() {
return semaphore;
}
}
2、 源码原理解析
2.1 获取信号
获取信号的方法如下:
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);//共享式获取AQS的同步状态
}
调用的是AQS的acquireSharedInterruptibly方法:
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())//线程中断 说明信号量对线程中断敏感
throw new InterruptedException();
if (tryAcquireShared(arg) < 0) //获取信号量失败 线程进入同步队列自旋等待
doAcquireSharedInterruptibly(arg);
}
其中tryAcquireShared依赖的是Sync的实现,Sync提供了公平和非公平式的方式,先看非公平式。
protected int tryAcquireShared(int acquires) {
return nonfairTryAcquireShared(acquires);
}
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
int available = getState();//同步状态 当前的信号量许可数
int remaining = available - acquires;//减去释放的信号量 剩余信号量许可数
if (remaining < 0 ||//剩余信号量小于0 直接返回remaining 不做CAS
compareAndSetState(available, remaining))//CAS更新
return remaining;
}
}
再看下公平式的。
protected int tryAcquireShared(int acquires) {
for (;;) {
if (hasQueuedPredecessors())//判断同步队列如果存在前置节点 获取信号量失败 其他和非公平式是一致的
return -1;
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
最后来看下,如果未获取到信号量的处理方法doAcquireSharedInterruptibly。
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);//线程进入同步队列
boolean failed = true;
try {
for (;;) {//自旋
final Node p = node.predecessor();
if (p == head) {//当前节点的前置节点是AQS的头节点 即自己是AQS同步队列的第一个节点
int r = tryAcquireShared(arg); //再去获取信号量
if (r >= 0) {//获取成功
setHeadAndPropagate(node, r);//退出自旋
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node); //获取失败 就取消获取
}
}
2.2 释放信号
释放信号的方法如下:
public void release() {
sync.releaseShared(1);
}
调用的是AQS的releaseShared方法:
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {//释放信号量
doReleaseShared();//唤醒后续的线程节点
return true;
}
return false;
}
tryReleaseShared交由子类Sync实现,代码如下:
protected final boolean tryReleaseShared(int releases) {
for (;;) {
int current = getState();//当前信号量许可数
int next = current + releases; //当前信号量许可数+释放的信号量许可数
if (next < current) // overflow 这个分支我看着永远走不进来呢
throw new Error("Maximum permit count exceeded");
if (compareAndSetState(current, next))//CAS更新当前信号量许可数
return true;
}
}
释放成功后,则继续调用doReleaseShared,唤醒后续线程节点可以来争取信号量了。
private void doReleaseShared() {
for (;;) {
Node h = head; //头节点
if (h != null && h != tail) {//同步队列中存在线程等待
int ws = h.waitStatus; //头节点线程状态
if (ws == Node.SIGNAL) {//头节点线程状态为SIGNAL 唤醒后续线程节点
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h); //唤醒下个节点
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
总结:Semaphore使用AQS同步状态来保存信号量的当前计数。它里面定义的acquireSharedInterruptibly方法会减少计数,当计数为非正值时阻塞线程,releaseShared方法会增加计数,在计数不超过信号量限制时要解除线程的阻塞。
参考资料:
https://github.com/lingjiango/ConcurrentProgramPractice
https://www.caveofprogramming.com/java-multithreading/java-multithreading-semaphores-part-12.html
https://java2blog.com/java-semaphore-example/
http://tutorials.jenkov.com/java-util-concurrent/semaphore.html
Java并发编程-Semaphore的更多相关文章
- Java并发编程Semaphore
信号量 信号量类Semaphore,用来保护对唯一共享资源的访问.一个简单的打印队列,并发任务进行打印,加入信号量同时之能有一个线程进行打印任务 . import java.util.concurre ...
- 【Java并发编程实战】-----“J.U.C”:Semaphore
信号量Semaphore是一个控制访问多个共享资源的计数器,它本质上是一个"共享锁". Java并发提供了两种加锁模式:共享锁和独占锁.前面LZ介绍的ReentrantLock就是 ...
- Java并发编程:CountDownLatch、CyclicBarrier和Semaphore
Java并发编程:CountDownLatch.CyclicBarrier和Semaphore 在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch ...
- Java并发编程的4个同步辅助类(CountDownLatch、CyclicBarrier、Semaphore、Phaser)
我在<JDK1.5引入的concurrent包>中,曾经介绍过CountDownLatch.CyclicBarrier两个类,还给出了CountDownLatch的演示案例.这里再系统总结 ...
- Java并发编程:CountDownLatch、CyclicBarrier和Semaphore (总结)
下面对上面说的三个辅助类进行一个总结: 1)CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同: CountDownLatch一般用于某个线程A等待 ...
- 14、Java并发编程:CountDownLatch、CyclicBarrier和Semaphore
Java并发编程:CountDownLatch.CyclicBarrier和Semaphore 在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch ...
- 【转】Java并发编程:CountDownLatch、CyclicBarrier和Semaphore
Java并发编程:CountDownLatch.CyclicBarrier和Semaphore Java并发编程:CountDownLatch.CyclicBarrier和Semaphore 在j ...
- java并发编程系列原理篇--JDK中的通信工具类Semaphore
前言 java多线程之间进行通信时,JDK主要提供了以下几种通信工具类.主要有Semaphore.CountDownLatch.CyclicBarrier.exchanger.Phaser这几个通讯类 ...
- Java并发编程基础三板斧之Semaphore
引言 最近可以进行个税申报了,还没有申报的同学可以赶紧去试试哦.不过我反正是从上午到下午一直都没有成功的进行申报,一进行申报 就返回"当前访问人数过多,请稍后再试".为什么有些人就 ...
随机推荐
- Javascript高级编程学习笔记(14)—— 引用类型(3)Date类型
除了前两天介绍的Object.Array类型,Date应该就是JS中最常用的引用类型了 先介绍一下Date类型,该类型使用在Java的 java.until.Date 类的基础上构建的 使用UTC 1 ...
- pycharm激活方式
进入C:\Windows\System32\drivers\etc替换host文件,或者在host文件后加入0.0.0.0 account.jetbrains.com然后断网,断网,断网!最后输入K7 ...
- Docker学习笔记-简单运行.netcore
前言: 环境:centos7.5 64 位 正文: 拉取 microsoft/dotnet, 安装完毕后执行 docker images 可以看到本地已经包含 microsoft/dotnet #包含 ...
- springboot tomcat配置参数列表
springboot tomcat的配置选项大全 server. Port = xxxx server. Address = server. contextPath = server. display ...
- 为什么 array.foreach 不支持 async/await
一.背景 react 项目中,渲染组件时,显示的数据一直有问题,本来以为是 react 组件的问题,后来才发现罪魁祸首在 fetch 数据的过程,因为我用了 async/await ,而却搭配了 fo ...
- iOS学习——iOS开发小知识点集合
在iOS学习和开发过程中,经常会遇到一些很小的知识点和问题,一两句话就可以解释清楚了,这样的知识点写一篇随笔又没有必要,但是又想mark一下,以备不时之需,所以就有了本文.后面遇到一些小的知识点会不断 ...
- okHttp超时报错解决方案
Android 使用okhttp,如果客户端等待的时间超过了okHttp的默认时间,就会报错java.net.SocketTimeoutException: timeout 所以,需要在调用okHtt ...
- .Net RabbitMQ系列之环境搭建于RabbitMQ基本介绍
本系列主要讲解RabbitMQ在.Net环境下的应用,由于Linux环境下,本人Linux功力有限,所以本系列的RabbitMQ跑在Windows环境中.所以的配置之类都在Windows环境中进行. ...
- Linux编程 11(shell全局环境变量与局变环境变量)
一.概述 在linux中,很多程序和脚本都通过环境变量来获取系统信息,存储临时数据,配置信息.环境变量是指用来存储有关shell会话和工作环境信息,允许你在内存中存储数据,以便程序或shell中运行的 ...
- .Net Core 2.0 preview1实现自定义认证方案
Microsoft.Authentication的使用方法在2.0中发生了比较大的变化,在1.1中认证配置是在Configure中完成. public void ConfigureServices(I ...