$CROI$ $R1$

  今天参加了一场比赛,什么比赛呢?CROI。

  CROI是什么呢? $Challestend$ $Rehtorbegnaro$ $OI$。总的来说就是我们机房的一些神仙出的题啦。

  这篇文章没有密码...被你发现啦!

  

  T1:Challestend and Hyperrectangle

  一道特别神仙的题目。

  题意概述一下:给出一个高维立方体的 $n$ 个边长,将它的表面刷上漆,再将它切成单位小块,求恰好有 $i$ 面被着色的小立方体个数,对998244353取模.$i \in [0,2n]$,$4<=n<=30000,1<=a_i<=2^{64}$.

  不会做呀...本来是有一点想法的,就是从一二三维的简单情况开始,进行类比,推出来一个比较科学的式子(它甚至可以过一个比较大的样例),但是对于 $a<=2$ 的情况就会崩溃,而且小一点的数据里每个都有这种情况,所以最后也没有分了。还是讲一下思路:

  一维:两个顶点,$a-2$个无色立方体;

  二维:四个顶点,$2\times(a-2+b-2)$个棱上的点,$(a-2)(b-2)$个无色立方体;

  三维:八个顶点,$4\times(a-2+b-2+c-2)$个棱上的点,$2\times((a-2)(b-2)+(a-2)(c-2)+(b-2)(c-2))$个面上的点,$(a-2)(b-2)(c-2)$个无色的;

  一维二维的可能比较难想,在这里放个图:

  

   

  这题比较玄学的一点就是怎么分辨 $n$ 维立方体的“面”,因为按照一般的思路来说,只有三维立方体才有“面”。不过通过看样例,可以发现这道题里的“面”指的就是 $n-1$ 维的空间啦。

  T2:Challestend and Anarchy Heap

  这道题还是比较简单的(虽然我没做出来)。

      

  题意概述:将斐波那契数顺次插入一个二叉堆,比较函数是随机的,问每次插入后堆顶的期望值的和,对998244353取模。$T<=400,1<=n<2^{64}$

  期望具有线性性,所以只要算出每个点作为堆顶的概率。虽然比较函数坏掉了,但是树的形态还是固定的。可以发现每次插入新数后,堆顶要么是新数,要么不变。考虑是新数的概率:新数运气超好,一路随机上来到了根,也就是$\frac{1}{2^{x}}$,(x=当前点离根节点的距离),其它情况下都继承原答案。递推可以做到 $O(N)$,但是显然跑不过,所以可以矩乘,由于深度不固定,还得分段矩乘,有一点难写。

  T3:Challestend and Summation

  挺好的一道题,专治多项式学傻。

  对以下式子求值:$n<=1e7,m<=1000$,F是一个 $m$ 项多项式。

  $\sum_{i=1}^n\sum_{j|i}F(j) \space (\%998244353)$

  首先给大家表演一下多项式学傻的人的做法:

  $\sum_{j=1}^n\frac{n}{j}\sum_{i=0}^{m-1}a_ij^i$

  $\sum_{j=1}^n\frac{n}{j}\sum_{i=0}^{m-1}a_i\sum_{k=1}^jS(i,k)\binom{j}{k}k!$

  $\sum_{j=1}^n\frac{n}{j}\sum_{i=0}^{m-1}a_i\sum_{k=1}^jS(i,k)\frac{j!}{k!(j-k)!}k!$

  $\sum_{j=1}^n\frac{n}{j}\sum_{i=0}^{m-1}a_i\sum_{k=1}^mS(i,k)\frac{j!}{(j-k)!}$

  $\sum_{i=0}^{m-1}a_i\sum_{k=1}^mS(i,k)\sum_{j=1}^n\frac{n}{j}\frac{j!}{(j-k)!}$

  第二类斯特林太妙啦,可以将很大的幂指数换成好求很多的阶乘!没错我当时就是这么想的。

  

  后来又想了一下才发现...画到第一步时已经是一个很显然的整除分块形式,只要能快速求出 $f$ 的前缀和即可。而通过一些函数知识可以得到,$m$ 次函数的前缀和是一个 $m+1$ 次的函数,所以插值即可。注意这里不能写 $m^2$ 的插值,要优化一下到 $m$.

  

 # include <cstdio>
# include <iostream>
# define R register int
# define ll long long using namespace std; const int mod=;
const int maxn=;
int n,m,a[maxn],k;
int ans,sx[maxn],f[maxn],inv[maxn],x[maxn],y[maxn]; ll cal (ll x)
{
ll s=,ans=;
for (R i=;i<m;++i)
{
ans=(ans+1LL*a[i]*s)%mod;
s=s*x%mod;
}
return ans;
} ll qui (ll a,ll b)
{
ll s=;
while(b)
{
if(b&) s=s*a%mod;
a=a*a%mod;
b>>=;
}
return s;
} ll S (int v)
{
if(v<=m) return y[v];
ll ans=;
for (R i=;i<=m;++i)
ans=(ans+1LL*y[i]*sx[i]%mod*(1LL*f[v]*inv[v-i]%mod*f[v-i-]%mod*inv[v--m]%mod))%mod;
return ans;
} int main()
{
scanf("%d%d",&n,&m); k=m;
for (R i=;i<m;++i) scanf("%d",&a[i]);
for (R i=;i<=m;++i)
{
x[i]=i;
y[i]=cal(i);
y[i]=(y[i]+y[i-])%mod;
}
f[]=;
for (R i=;i<=n;++i) f[i]=1LL*f[i-]*i%mod;
inv[n]=qui(f[n],mod-);
for (R i=n;i>=;--i) inv[i-]=1LL*inv[i]*i%mod;
for (R i=;i<=k;++i)
{
sx[i]=;
for (R j=;j<=k;++j)
{
if(i==j) continue;
sx[i]=1LL*sx[i]*(x[i]-x[j]+mod)%mod;
}
sx[i]=qui(sx[i],mod-);
}
int l=,r;
while(l<=n)
{
r=n/(n/l);
ans=(ans+1LL*(n/l)*((S(r)-S(l-))%mod+mod)%mod)%mod;
l=r+;
}
printf("%d\n",ans);
return ;
}

C

  T4:Challestend and the Second War against Duliu

  一看题目就可以发现这道题“Duliu”的本质了。

  简单的说:给定一个长度为 $n$ 的数列以及 $n$ 个观察者,每个观察者可以看到 $[l_i,r_i]$ 的一段区域,要求支持如下操作:

  对数列区间加;查询一段编号连续的观察者所能看到的值的和;修改某个观察者的观察区域。

  $n,m<=10^5$

  这题能做?$O(N\sqrt{N}logN)$ 的做法其实不是特别难想,但是似乎会被卡常。另注:这题的最大难点在于读题。

  刚刚听了题解,感觉学到了很多东西,原来分块可以做到 $O(\sqrt{N})$ 区间加,$O(1)$ 区间查询,实在是非常神奇。

  那么这里先写抄一份正常解法:

  首先考虑分块维护区间和,有一个比较巧妙的做法是对于每个块维护和,再对于每个点维护块内的前后缀和,这样就可以做到 $O(1)$ 区间查询了。如果直接把这个做法扩展到区间加上复杂度就崩了,因为每次要打很多的标记。考虑对于每个块维护一个delta,表示未下放的标记...但是每个点得到的标记的实际值和它的位置是有关的,所以这里有两个做法:1.差分;2.delta标记变为维护一个等差数列的首项和公差;再用这种巧妙的分块代替原先的树状数组,即可通过本题 $O(N\sqrt{N})$

  下面是我的乱搞做法:

  对于观察者序列分块,每个块内维护一个长度为 $n$ 的数组,每个位置上的值表示这个块内的观察者有多少能看到这个位置。修改时,对于每个块计算贡献;查询时,整块可以直接得到答案,散点暴力查询。修改观察区间则更简单,只需要在相应的块内做一些处理就可以了。这里需要一个区间修改的数据结构,选择树状数组。

  这样做的问题在于每个操作之间的复杂度过于不平衡,所以用 a,b,c 表示三个操作的操作次数,m表示分块大小,得到下式:

  $a\frac{N}{M}logN+b\frac{N}{M}+bMlogN+clogN$

  这样就可以用...模拟退火得到最优的块大小!

  ---shzr

CROI R1的更多相关文章

  1. PP66 EEPPPPMM SSyysstteemm AAddmmiinniissttrraattiioonn GGuuiiddee 16 R1

    ※★◆●PP66 EEPPPPMM SSyysstteemm AAddmmiinniissttrraattiioonn GGuuiiddee 16 R1AApprriill 22001166Conte ...

  2. P6 EPPM Installation and Configuration Guide 16 R1 April 2016

    P6 EPPM Installation and Configuration Guide 16 R1         April 2016 Contents About Installing and ...

  3. P6 EPPM 16 R1 文档和帮助系统

    P6 EPPM 16 R1 文档和帮助系统 https://docs.oracle.com/cd/E74894_01/ http://docs.oracle.com/cd/E68202_01/clie ...

  4. P6 Professional Installation and Configuration Guide (Microsoft SQL Server Database) 16 R1

    P6 Professional Installation and Configuration Guide (Microsoft SQL Server Database) 16 R1       May ...

  5. 位运算取第一个非0的位 r & (~(r-1))

    Single Number III Given an array of numbers nums, in which exactly two elements appear only once and ...

  6. Intersoft Mobile Studio 2013 R1 SP1 Crack

    Intersoft Mobile Studio 2013 R1 SP1 (iOS, Android & WinR) Leave a comment   tweet       inShare ...

  7. 洛谷3月月赛 R1 Step! ZERO to ONE

    洛谷3月月赛 R1 Step! ZERO to ONE 普及组难度 290.25/310滚粗 t1 10分的日语翻译题....太难了不会... t2 真·普及组.略 注意长为1的情况 #include ...

  8. SDOI 2019 R1游记

    $SDOI$ $2019$ $R1$游记 昨天才刚回来,今天就来写游记啦! Day -5: 做了一下去年省选的Day1,感觉很神仙. Day -4: 做了一下去年省选的Day2,感觉还是很神仙. Da ...

  9. SDOI2017 R1做题笔记

    SDOI2017 R1做题笔记 梦想还是要有的,万一哪天就做完了呢? 也就是说现在还没做完. 哈哈哈我竟然做完了-2019.3.29 20:30

随机推荐

  1. virtualbox中 Kali Linux安装增强功能

    1. 将VBoxLinuxAdditions.run文件copy出来 2. 赋予执行权限 chmod +x VBoxLinuxAdditions.run 3. 安装 ./VBoxLinuxAdditi ...

  2. SAP MM GR-based IV, 无GR不能IV?

    SAP MM GR-based IV, 无GR不能IV? 如下的采购订单, 没有做过收货, ITEM的details里却勾选了’GR-Bsd IV’ 选项. 此时试图直接针对该PO#450260713 ...

  3. 数据分析 - 美国金融科技公司Prosper的风险评分分析

    数据分析 - 美国金融科技公司Prosper的风险评分分析 今年Reinhard Hsu觉得最有意思的事情,是参加了拍拍贷第二届魔镜杯互联网金融数据应用大赛.通过"富爸爸队",认识 ...

  4. Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(下)

    LinearGradient 线性渐变渲染器 LinearGradient中文翻译过来就是线性渐变的意思.线性渐变通俗来讲就是给起点设置一个颜色值如#faf84d,终点设置一个颜色值如#CC423C, ...

  5. Node.js学习起步

    Node.js学习: 简单的说 Node.js 就是运行在服务端的 JavaScript.Node.js 是一个基于Chrome JavaScript 运行时建立的一个平台.Node.js是一个事件驱 ...

  6. (其他)sublime text3的emmt插件的简便用法

  7. mysql之用户管理

    本文内容: 用户的介绍 查看用户 创建用户帐户 修改账户 删除帐户 关于匿名用户 首发日期:2018-04-19 用户的介绍: mysql的客户端连接是以用户名来登录服务端. 服务端可以对用户的权限来 ...

  8. 记CSS格式化上下文

    fomatting context 引言 主要讲解的是BFC上下文 本文是查看 史上最全面.最透彻的BFC原理剖析 的笔记 所以不会详解BFC, 只是记录学习心得, 以及重要规则避免原文失效 简介 F ...

  9. Struts2之action 之 感叹号 ! 动态方法调用

    struts2的动态方法调用的方式: 1.第一种方式:设置method属性 在Action类中定义一个签名与execute方法相同.只是名字不同的方法,如定义为: public String logi ...

  10. 餐饮ERP相关问题FAQ

    1.订单无法自动上传,手动上传也是失败. 检查网络是否有问题,网络如果正常,打开本地连接-属性-internet协议版本4-首选DNS服务器设置为(114.114.114.114) 然后再打开IE浏览 ...