Steps to One

啊, 我要死了, 这种垃圾题居然没写出来, 最后十分钟才发现错在哪。

不知道为什么我以为 对于一个数x , 除了它的因子和它的倍数都是和它互质的, 我脑子是抽了吗?

随便瞎dpdp的题。。 还熬夜打cf好暴躁啊啊啊。

我求我自己以后打比赛多动动脑子。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ;
const double eps = 1e-;
const double PI = acos(-); int Power(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1ll * ans * a % mod;
a = 1ll * a * a % mod; b >>= ;
}
return ans;
}
void add(int &a, int b) {
a += b; if(a >= mod) a -= mod;
} int n, ans, dp[N];
int inv[N]; vector<int> fac[N];
vector<int> cnt[N]; int dfs(int x) {
if(x == ) return ;
if(~dp[x]) return dp[x];
dp[x] = ;
int ret = n / x;
int res = SZ(fac[x]);
add(dp[x], (1ll * inv[n - ret] * n + mod) % mod);
for(int i = ; i < SZ(fac[x]) - ; i++) {
add(dp[x], 1ll * inv[n - ret] * cnt[x][i] % mod * dfs(fac[x][i]) % mod);
}
return dp[x];
} int main() {
memset(dp, -, sizeof(dp));
inv[] = ;
for(int i = ; i < N; i++) inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < N; i++)
for(int j = i; j < N; j += i)
fac[j].push_back(i);
scanf("%d", &n);
for(int i = ; i <= n; i++) {
cnt[i].resize(SZ(fac[i]));
for(int j = SZ(fac[i]) - ; j >= ; j--) {
cnt[i][j] = n / fac[i][j];
for(int k = j + ; k < SZ(fac[i]); k++)
if(fac[i][k] % fac[i][j] == )
cnt[i][j] -= cnt[i][k];
}
}
for(int i = ; i <= n; i++)
add(ans, 1ll * inv[n] * dfs(i) % mod);
printf("%d\n", ans);
return ;
} /*
*/

Codeforces 1139D Steps to One dp的更多相关文章

  1. Codeforces.1139D.Steps to One(DP 莫比乌斯反演)

    题目链接 啊啊啊我在干什么啊.怎么这么颓一道题做这么久.. 又记错莫比乌斯反演式子了(╯‵□′)╯︵┻━┻ \(Description\) 给定\(n\).有一个初始为空的集合\(S\).令\(g\) ...

  2. codeforces#1139D. Steps to One (概率dp+莫比乌斯反演)

    题目链接: http://codeforces.com/contest/1139/problem/D 题意: 在$1$到$m$中选择一个数,加入到一个初始为空的序列中,当序列的$gcd$和为$1$时, ...

  3. Codeforces - 1139D - Steps to One (概率DP+莫比乌斯反演)

    蒟蒻数学渣呀,根本不会做. 解法是参考 https://blog.csdn.net/xs18952904/article/details/88785210 这位大佬的. 状态的设计和转移如上面博客一样 ...

  4. [Codeforces 1139D] Steps to One

    [题目链接] https://codeforces.com/contest/1139/problem/D [算法] 考虑dp 设fi表示现在gcd为i , 期望多少次gcd变为1 显然 , fi = ...

  5. Codeforces 1139D(推式子+dp)

    题目传送 推公式博客传送 推完式子就是去朴素地求就行了Orz const int maxn = 1e5 + 5; const int mod = 1e9 + 7; int m, mu[maxn], v ...

  6. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  7. Codeforces Round #321 (Div. 2) A. Kefa and First Steps【暴力/dp/最长不递减子序列】

    A. Kefa and First Steps time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  8. Codeforces 1139D(期望dp)

    题意是模拟一个循环,一开始有一个空序列,之后每次循环: 1.从1到m中随机选出一个数字添加进去,每个数字被选的概率相同. 2.检查这个序列的gcd是否为1,如果为1则停止,若否则重复1操作直至gcd为 ...

  9. codeforces 721C (拓排 + DP)

    题目链接:http://codeforces.com/contest/721/problem/C 题意:从1走到n,问在时间T内最多经过多少个点,按路径顺序输出. 思路:比赛的时候只想到拓排然后就不知 ...

随机推荐

  1. web@css高级选择器(after,befor用法),基本css样式

    1.高阶选择器:子代后代,相邻通用兄弟,交集并集,属性,伪类,伪元素子代后代选择器 div>p{}  div p{}相邻通用兄弟 div+p{}  div~p{}理解:div同学的同桌p  di ...

  2. MD5加密算法工具类

    import java.math.BigInteger; import java.security.MessageDigest; import java.security.NoSuchAlgorith ...

  3. 前端 ----jQuery的介绍

    01-jQuery的介绍   1.为什么要使用jQuery 在用js写代码时,会遇到一些问题: window.onload 事件有事件覆盖的问题,因此只能写一个事件. 代码容错性差. 浏览器兼容性问题 ...

  4. 浅谈深度优先和广度优先(scrapy-redis)

    首先先谈谈深度优先和广度优先的定义 深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法.沿着树的深度遍历树的节点,尽可能深的搜索树的分支.当节点v的 ...

  5. ORACLE 字段AES算法加密、解密

    ORACLE 字段AES算法加密.解密(解决中文乱码问题)2014年02月12日 17:13:37 华智互联 阅读数:97971.加解密函数入口 CREATE OR REPLACE FUNCTION ...

  6. 在多任务(RTOS)环境中使用看门狗

    最近在SEGGER的博客上看到一篇有关在实时操作系统使用看门狗的文章.从一个失败的太空项目出发,分析了看门狗的作用及使用,自我感觉很有启发,特此翻译此文并推荐给各位同仁.为了阅读方便,有些航天领域名词 ...

  7. day04 运算符 流程控制 (if while/of)

    1. 运算符算数运算符 + - * / int / float :数字类型 # print(10 + 3.1)# print(10 / 3)# print(10 // 3)# print(10 % 3 ...

  8. 原码、补码、反码的概念和java数的存储方式

    原码:用符号位和数值位表示一个带符号数,整数符号->0,负数符号->1,数值一般用二进制形式表示 [+10011]原=00010011    [-10011]原=10010011 反码:正 ...

  9. axure交互样式(下拉列表和矩形)

    *****矩形交互样式之单选按钮*****1.账号输入框.密码输入框等文本框实现效果:输入框获取焦点时边框是蓝色,失 去焦点时边框为红色: 2.实现思路:边框用矩形来设置选中和未选中.禁用和启用即可 ...

  10. C++ Primer 笔记——顺序容器

    1.标准库中定义了一些顺序容器,所有顺序容器都提供了快速顺序访问元素的能力. 2.如果容器的元素类型没有默认构造函数,那么在构造这个容器的时候不能只指定这个容器的数目,因为没有办法默认构造这些元素. ...