Codeforces 986D Perfect Encoding FFT 分治 高精度
原文链接https://www.cnblogs.com/zhouzhendong/p/9161557.html
题目传送门 - Codeforces 986D
题意
给定一个数 $n(n\leq 10^{1500000})$ , 求满足 $(\prod b_i)\geq n$ 的 $\min(\sum b_i)$ 。
题解
这题是下面链接中那题的加强版。
这题的做法是预估出大概有多少个 $3$ ,然后最后几个数一个一个加上去就可以了。
至于求 $3$ 的快速幂,要用FFT优化。
时间复杂度:
$$T(m)=T(m/2)+m\log m=m\log m$$
其中这里的 $m$ 与输入的 $n$ 的位数同阶。
注意点:
1. 本题卡常,要压位,我压了3位,但是2位好像也可以过。
2. 注意一下 $n=1$ 的情况。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=(1<<21)+1;
const double PI=acos(-1.0);
int m;
char s[N];
int bit=1000;
struct Big{
int len;
LL a[N];
void clear(){
len=0;
memset(a,0,sizeof a);
}
void print(){
for (int i=len;i>=1;i--)
printf("%03d",(int)a[i]);
puts("");
}
bool operator >= (Big &x){
if (len!=x.len)
return len>x.len;
for (int i=len;i>=1;i--)
if (a[i]!=x.a[i])
return a[i]>x.a[i];
return 1;
}
void pushbits(){
for (int i=1;i<=len;i++)
a[i+1]+=a[i]/bit,a[i]%=bit;
while (a[len+1]){
len++;
a[len+1]=a[len]/bit;
a[len]%=bit;
}
}
void operator *= (int x){
for (int i=1;i<=len;i++)
a[i]*=x;
pushbits();
}
}n,x,tmp;
struct C{
double r,i;
C(){}
C(double _r,double _i){r=_r,i=_i;}
C operator + (C x){return C(r+x.r,i+x.i);}
C operator - (C x){return C(r-x.r,i-x.i);}
C operator * (C x){return C(r*x.r-i*x.i,r*x.i+i*x.r);}
}A[N],B[N],w[N];
int R[N];
void FFT(C a[],int n){
for (int i=0;i<n;i++)
if (R[i]>i)
swap(a[i],a[R[i]]);
for (int t=n>>1,d=1;d<n;d<<=1,t>>=1)
for (int i=0;i<n;i+=(d<<1))
for (int j=0;j<d;j++){
C tmp=w[t*j]*a[i+j+d];
a[i+j+d]=a[i+j]-tmp;
a[i+j]=a[i+j]+tmp;
}
}
void Times (Big &a,Big &b,Big &c){
int n,d;
for (n=1,d=0;n<a.len+b.len;n<<=1,d++);
for (int i=0;i<n;i++){
R[i]=(R[i>>1]>>1)|((i&1)<<(d-1));
w[i]=C(cos(PI*2*i/n),sin(PI*2*i/n));
A[i]=B[i]=C(0,0);
}
for (int i=1;i<=a.len;i++)
A[i-1].r=a.a[i];
for (int i=1;i<=b.len;i++)
B[i-1].r=b.a[i];
FFT(A,n),FFT(B,n);
for (int i=0;i<n;i++)
A[i]=A[i]*B[i],w[i].i*=-1.0;
FFT(A,n);
c.clear();
for (int i=0;i<n;i++)
c.a[i+1]=(LL)(A[i].r/n+0.5);
c.len=n;
while (c.a[c.len]==0&&c.len>1)
c.len--;
c.pushbits();
}
void Pow(int y){
if (y==0){
x.clear();
x.a[x.len=1]=1;
return;
}
Pow(y/2);
Times(x,x,x);
if (y&1)
x*=3;
}
bool check(Big &x,int y){
tmp=x;
tmp*=y;
return tmp>=n;
}
int main(){
scanf("%s",s+1);
n.len=strlen(s+1);
int pw10[3]={1,10,100};
for (int i=1;i<=n.len;i++)
n.a[(n.len-i+1-1)/3+1]+=pw10[(n.len-i)%3]*(s[i]-'0');
m=max(0,(int)(n.len*log(10)/log(3))-3);
n.len=(n.len-1)/3+1;
if (n.len==1&&n.a[1]==1){
puts("1");
return 0;
}
Pow(m);
while (1){
for (int i=2;i<=4;i++)
if (check(x,i)){
printf("%d",m*3+i);
return 0;
}
x*=3;
m++;
}
return 0;
}
Codeforces 986D Perfect Encoding FFT 分治 高精度的更多相关文章
- Codeforces 986D Perfect Encoding FFT
题意: 给定一个数n,选出m个数使得 $\Pi_{i=1}^m a_i\ge n$,求$\sum_{i=1}^m a_i$的最小值 ,其中$m$的大小不限 $n$的长度$\le 10^6$ 简单的计算 ...
- Codeforces 986D - Perfect Encoding(FFT+爪巴卡常题)
题面传送门 题意:给出 \(n\),构造出序列 \(b_1,b_2,\dots,b_m\) 使得 \(\prod\limits_{i=1}^mb_i\geq n\),求 \(\sum\limits_{ ...
- SPOJ - VFMUL - Very Fast Multiplication FFT加速高精度乘法
SPOJ - VFMUL:https://vjudge.net/problem/SPOJ-VFMUL 这是一道FFT求高精度的模板题. 参考:https://www.cnblogs.com/Rabbi ...
- P1919 FFT加速高精度乘法
P1919 FFT加速高精度乘法 传送门:https://www.luogu.org/problemnew/show/P1919 题意: 给出两个n位10进制整数x和y,你需要计算x*y. 题解: 对 ...
- [Codeforces 580D]Fizzy Search(FFT)
[Codeforces 580D]Fizzy Search(FFT) 题面 给定母串和模式串,字符集大小为4,给定k,模式串在某个位置匹配当且仅当任意位置模式串的这个字符所对应的母串的位置的左右k个字 ...
- hdu5197 DZY Loves Orzing(FFT+分治)
hdu5197 DZY Loves Orzing(FFT+分治) hdu 题目描述:一个n*n的矩阵里填入1~n^2的数,要求每一排从前往后能看到a[i]个数(类似于身高阻挡视线那种),求方案数. 思 ...
- hdu5322 Hope(dp+FFT+分治)
hdu5322 Hope(dp+FFT+分治) hdu 题目大意:n个数的排列,每个数向后面第一个大于它的点连边,排列的权值为每个联通块大小的平方,求所有排列的权值和. 思路: 考虑直接设dp[i]表 ...
- CodeForces 553E Kyoya and Train 动态规划 多项式 FFT 分治
原文链接http://www.cnblogs.com/zhouzhendong/p/8847145.html 题目传送门 - CodeForces 553E 题意 一个有$n$个节点$m$条边的有向图 ...
- 挑选队友 (生成函数 + FFT + 分治)
链接:https://www.nowcoder.com/acm/contest/133/D来源:牛客网 题目描述 Applese打开了m个QQ群,向群友们发出了组队的邀请.作为网红选手,Applese ...
随机推荐
- springboot:SunCertPathBuilderException: unable to find valid certification path to requested target
有次创建springboot工程时报错,在之前是没有问题的.见下: 出现这种情况,有时在URL最后加一个反斜杠就可以了,但是这次不行,加了也没有用. 后来把URL改成了:http://start.sp ...
- python学习第16天。
内置函数是在原本已经有的序列的基础上,再生成新的. List的方是修改原列表. 内置函数中大部分函数的返回值大部分都是迭代器.生成器. Sorted需要遍历操作,不是单纯的迭代,所以不生成迭代器. 一 ...
- Linux之 nginx-redis-virtualenv-mysql
mysql maraidb相关 .yum安装好,启动 安装: yum install mariadb-server mariadb 启动mabiadb: systemctl start mariadb ...
- Ex 2_3 求递推式的通项公式..._第三次作业
- ActiveMQ在Windows下的安装与启动(懒人专属)
其实这些ActiveMQ官网都有,但是如果你懒得看官网,那就直接看这吧! 1. 官网下载最新的ActiveMQ安装包 apache-activemq-x.x.x-bin.zip并解压 2.进入安装 ...
- c#在Excel指定单元格中插入图片
方法一: /// 将图片插入到指定的单元格位置,并设置图片的宽度和高度./// 注意:图片必须是绝对物理路径/// </summary>/// <param name="R ...
- 注册InstallShield
安装InstallShield 下载installshield limitededition版本,这个版本是免费的 注册 安装打开后会给一个网址要求进行注册 其中,国籍是必填项但是下拉菜单中没有内容, ...
- C# 将Excel转换为PDF
C# 将Excel转换为PDF 转换场景 将Excel转换为PDF是一个很常用的功能,常见的转换场景有以下三种: 转换整个Excel文档到PDF转换Excel文档的某一个工作表到PDF转换Excel文 ...
- Confluence 6 用户目录图例 - 使用 LDAP 授权的内部目录
上面的图:Confluence 连接 LDAP 服务器仅用做授权 https://www.cwiki.us/display/CONFLUENCEWIKI/Diagrams+of+Possible+Co ...
- 《剑指offer》 树的子结构
本题来自<剑指offer> 树的子结构 题目: 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) 思路: 分两步走: 第一步:判断根节点,两个根节 ...