原文链接https://www.cnblogs.com/zhouzhendong/p/9161557.html

题目传送门 - Codeforces 986D

题意

  给定一个数 $n(n\leq 10^{1500000})$ , 求满足 $(\prod b_i)\geq n$ 的 $\min(\sum b_i)$ 。

题解

  这题是下面链接中那题的加强版。

  BZOJ1263 [SCOI2006]整数划分 高精度

  这题的做法是预估出大概有多少个 $3$ ,然后最后几个数一个一个加上去就可以了。

  至于求 $3$ 的快速幂,要用FFT优化。

  时间复杂度:

$$T(m)=T(m/2)+m\log m=m\log m$$

  其中这里的 $m$ 与输入的 $n$ 的位数同阶。

  注意点:

  1.  本题卡常,要压位,我压了3位,但是2位好像也可以过。

  2.  注意一下 $n=1$ 的情况。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=(1<<21)+1;
const double PI=acos(-1.0);
int m;
char s[N];
int bit=1000;
struct Big{
int len;
LL a[N];
void clear(){
len=0;
memset(a,0,sizeof a);
}
void print(){
for (int i=len;i>=1;i--)
printf("%03d",(int)a[i]);
puts("");
}
bool operator >= (Big &x){
if (len!=x.len)
return len>x.len;
for (int i=len;i>=1;i--)
if (a[i]!=x.a[i])
return a[i]>x.a[i];
return 1;
}
void pushbits(){
for (int i=1;i<=len;i++)
a[i+1]+=a[i]/bit,a[i]%=bit;
while (a[len+1]){
len++;
a[len+1]=a[len]/bit;
a[len]%=bit;
}
}
void operator *= (int x){
for (int i=1;i<=len;i++)
a[i]*=x;
pushbits();
}
}n,x,tmp;
struct C{
double r,i;
C(){}
C(double _r,double _i){r=_r,i=_i;}
C operator + (C x){return C(r+x.r,i+x.i);}
C operator - (C x){return C(r-x.r,i-x.i);}
C operator * (C x){return C(r*x.r-i*x.i,r*x.i+i*x.r);}
}A[N],B[N],w[N];
int R[N];
void FFT(C a[],int n){
for (int i=0;i<n;i++)
if (R[i]>i)
swap(a[i],a[R[i]]);
for (int t=n>>1,d=1;d<n;d<<=1,t>>=1)
for (int i=0;i<n;i+=(d<<1))
for (int j=0;j<d;j++){
C tmp=w[t*j]*a[i+j+d];
a[i+j+d]=a[i+j]-tmp;
a[i+j]=a[i+j]+tmp;
}
}
void Times (Big &a,Big &b,Big &c){
int n,d;
for (n=1,d=0;n<a.len+b.len;n<<=1,d++);
for (int i=0;i<n;i++){
R[i]=(R[i>>1]>>1)|((i&1)<<(d-1));
w[i]=C(cos(PI*2*i/n),sin(PI*2*i/n));
A[i]=B[i]=C(0,0);
}
for (int i=1;i<=a.len;i++)
A[i-1].r=a.a[i];
for (int i=1;i<=b.len;i++)
B[i-1].r=b.a[i];
FFT(A,n),FFT(B,n);
for (int i=0;i<n;i++)
A[i]=A[i]*B[i],w[i].i*=-1.0;
FFT(A,n);
c.clear();
for (int i=0;i<n;i++)
c.a[i+1]=(LL)(A[i].r/n+0.5);
c.len=n;
while (c.a[c.len]==0&&c.len>1)
c.len--;
c.pushbits();
}
void Pow(int y){
if (y==0){
x.clear();
x.a[x.len=1]=1;
return;
}
Pow(y/2);
Times(x,x,x);
if (y&1)
x*=3;
}
bool check(Big &x,int y){
tmp=x;
tmp*=y;
return tmp>=n;
}
int main(){
scanf("%s",s+1);
n.len=strlen(s+1);
int pw10[3]={1,10,100};
for (int i=1;i<=n.len;i++)
n.a[(n.len-i+1-1)/3+1]+=pw10[(n.len-i)%3]*(s[i]-'0');
m=max(0,(int)(n.len*log(10)/log(3))-3);
n.len=(n.len-1)/3+1;
if (n.len==1&&n.a[1]==1){
puts("1");
return 0;
}
Pow(m);
while (1){
for (int i=2;i<=4;i++)
if (check(x,i)){
printf("%d",m*3+i);
return 0;
}
x*=3;
m++;
}
return 0;
}

  

Codeforces 986D Perfect Encoding FFT 分治 高精度的更多相关文章

  1. Codeforces 986D Perfect Encoding FFT

    题意: 给定一个数n,选出m个数使得 $\Pi_{i=1}^m a_i\ge n$,求$\sum_{i=1}^m a_i$的最小值 ,其中$m$的大小不限 $n$的长度$\le 10^6$ 简单的计算 ...

  2. Codeforces 986D - Perfect Encoding(FFT+爪巴卡常题)

    题面传送门 题意:给出 \(n\),构造出序列 \(b_1,b_2,\dots,b_m\) 使得 \(\prod\limits_{i=1}^mb_i\geq n\),求 \(\sum\limits_{ ...

  3. SPOJ - VFMUL - Very Fast Multiplication FFT加速高精度乘法

    SPOJ - VFMUL:https://vjudge.net/problem/SPOJ-VFMUL 这是一道FFT求高精度的模板题. 参考:https://www.cnblogs.com/Rabbi ...

  4. P1919 FFT加速高精度乘法

    P1919 FFT加速高精度乘法 传送门:https://www.luogu.org/problemnew/show/P1919 题意: 给出两个n位10进制整数x和y,你需要计算x*y. 题解: 对 ...

  5. [Codeforces 580D]Fizzy Search(FFT)

    [Codeforces 580D]Fizzy Search(FFT) 题面 给定母串和模式串,字符集大小为4,给定k,模式串在某个位置匹配当且仅当任意位置模式串的这个字符所对应的母串的位置的左右k个字 ...

  6. hdu5197 DZY Loves Orzing(FFT+分治)

    hdu5197 DZY Loves Orzing(FFT+分治) hdu 题目描述:一个n*n的矩阵里填入1~n^2的数,要求每一排从前往后能看到a[i]个数(类似于身高阻挡视线那种),求方案数. 思 ...

  7. hdu5322 Hope(dp+FFT+分治)

    hdu5322 Hope(dp+FFT+分治) hdu 题目大意:n个数的排列,每个数向后面第一个大于它的点连边,排列的权值为每个联通块大小的平方,求所有排列的权值和. 思路: 考虑直接设dp[i]表 ...

  8. CodeForces 553E Kyoya and Train 动态规划 多项式 FFT 分治

    原文链接http://www.cnblogs.com/zhouzhendong/p/8847145.html 题目传送门 - CodeForces 553E 题意 一个有$n$个节点$m$条边的有向图 ...

  9. 挑选队友 (生成函数 + FFT + 分治)

    链接:https://www.nowcoder.com/acm/contest/133/D来源:牛客网 题目描述 Applese打开了m个QQ群,向群友们发出了组队的邀请.作为网红选手,Applese ...

随机推荐

  1. PHP程序守护进程化

    一般Server程序都是运行在系统后台,这与普通的交互式命令行程序有很大的区别.glibc里有一个函数daemon.调用此函数,就可使当前进程脱离终端变成一个守护进程,具体内容参见man daemon ...

  2. spring3.0+Atomikos 构建jta的分布式事务

    摘自: http://gongjiayun.iteye.com/blog/1570111 spring3.0+Atomikos 构建jta的分布式事务 spring3.0已经不再支持jtom了,不过我 ...

  3. HashMap遍历的两种方式,推荐使用entrySet()

    第一种: Map map = new HashMap(); Iterator iter = map.entrySet().iterator(); while (iter.hasNext()) {    ...

  4. 用docker快速搭建wordpress博客

      WordPress是一个非常著名的PHP编写的博客平台,发展到目前为止已经形成了一个庞大的网站平台系统.在WP上有规模庞大的插件和主题,可以帮助我们快速建立一个博客甚至网站. 在Windows上可 ...

  5. Go代码重构:23倍的性能爆增

    几周前,我读了一篇名为“ Good Code vs Go Code中的错误代码 ”的文章,作者指导我们逐步完成实际业务用例的重构. 本文的重点是将“坏代码”转变为“良好代码”:更具惯用性,更易读,利用 ...

  6. 信息摘要算法之四:SHA512算法分析与实现

    前面一篇中我们分析了SHA256的原理,并且实现了该算法,在这一篇中我们将进一步分析SHA512并实现之. 1.SHA简述 尽管在前面的篇章中我们介绍过SHA算法,但出于阐述的完整性我依然要简单的说明 ...

  7. Java_解惑

    书名 ================================================================================================= ...

  8. Confluence 6 用户宏示例 - Hello World

    下面示例显示了如何创建一个用户宏,在这个用户宏中显示文本 'Hello World!' 和任何用户在宏内容中输入的内容. Macro name helloworld Visibility Visibl ...

  9. SpringBoot全局日志管理(AOP)

    1.在pom.xml中引入aop的jar包 <dependency> <groupId>org.springframework.boot</groupId> < ...

  10. Tomcat解决中文乱码并部署项目

    1.在Tomcat下的server.xml中添加URIEncoding="UTF-8"(解决中文乱码的问题) 2.在Tomcat下的server.xml中添加<Context ...