题意

此题可以说是一个很裸的一个二分图染色,但是比较不同的是,这个图中可能是不联通的,因此我们需要找到所有的联通块,然后一一选出每个联通块中黑块与白块中最小的个数,然后加入到最后的答案中去,也是很坑的一点。

然后就需要用到深搜来二分图染色,就是如果当前颜色为白色,那接下来所遍历到的点的颜色则一定要与当前颜色相反.

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <vector>
using namespace std;
const int maxn=10010;
int n,m,tot_1,tot_2,ans;
vector <int> e[1010];
int f[maxn];
void dfs(int u)
{
for(int i = 1; i < e[u].size(); i++)
{
if (f[u] == f[e[u][i]])
{
cout<<"Impossible";
exit(0);
}
if (!f[e[u][i]])
{
f[e[u][i]] = 3 - f[u];
if(f[e[u][i]] == 1)
tot_1++;
else
tot_2++;
dfs(e[u][i]);
}
}
}
int main()
{
int x, y;
cin >> n >> m;
for(int i = 1; i <= m; i++)
{
cin >> x >> y;
e[x].push_back(y);
e[y].push_back(x);;
}
for(int i = 1; i <= n; i++)
if(!f[i])
{
f[i] = 1;
tot_1 = 1;
tot_2 = 0;
dfs(i);
tot_1 = min(tot_1,tot_2);
ans += tot_1;
}
cout<<ans;
return 0;
}

洛谷P1330封锁阳光大学题解的更多相关文章

  1. 洛谷 P1330 封锁阳光大学题解

    题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M ...

  2. 洛谷——P1330 封锁阳光大学

    P1330 封锁阳光大学 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构 ...

  3. 洛谷P1330 封锁阳光大学(二分图染色)

    P1330 封锁阳光大学 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构 ...

  4. 洛谷P1330 封锁阳光大学

    题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M ...

  5. 洛谷 P1330 封锁阳光大学 Label:染色问题

    题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M ...

  6. 洛谷P1330封锁阳光大学[二分图染色]

    题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M ...

  7. 洛谷P1330 封锁阳光大学 [图论,染色]

    题目传送门 封锁阳光大学 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构 ...

  8. 洛谷 P1330 封锁阳光大学

    题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M ...

  9. 洛谷P1330封锁阳光大学——图的染色

    题目:https://www.luogu.org/problemnew/show/P1330 此题我最初没有思路,暴搜而爆0: 然后才明白关键在于把所有点分成两类,因为可以发现点之间的关系是存在两两对 ...

随机推荐

  1. 二次剩余 Cipolla算法

    欧拉准则 \(a\)是\(p\)的二次剩余等价于\(a^{\frac{p-1}{2}}\equiv 1\pmod p\),\(a\)不是\(p\)的二次剩余等价于\(a^{\frac{p-1}{2}} ...

  2. php 简单的学习GD库绘制图片并传回给前端实现方式

    1.基本的GD库绘制图片汇总 2.后台实现小案例 <?php // $img = imagecreatetruecolor(200,40); // var_dump($img); // 利用GD ...

  3. python中换行,'\r','\n'及'、'\r\n'

    '\r'的本意是回到行首,'\n'的本意是换行. 所以回车相当于做的是'\r\n'或者'\n\r'.'\r'就是换行并回行首, '\n'就是换行并回行首,用'\r\n'表示换行并回行首. window ...

  4. Dapper.NET

    关于Dapper.NET的相关论述   年少时,为何不为自己的梦想去拼搏一次呢?纵使头破血流,也不悔有那年少轻狂.感慨很多,最近事情也很多,博客也很少更新了,毕竟每个人都需要为自己的生活去努力. 最近 ...

  5. 【学习总结】GirlsInAI ML-diary day-5-布尔表达式/Bool

    [学习总结]GirlsInAI ML-diary 总 原博github链接-day5 认识布尔表达式 简单来说,bool 就是对错判断. 给个条件,如果满足条件就返回True, 不满足条件就返回Fal ...

  6. java设计模式:概述与GoF的23种设计模式

    软件设计模式的产生背景 设计模式这个术语最初并不是出现在软件设计中,而是被用于建筑领域的设计中. 1977 年,美国著名建筑大师.加利福尼亚大学伯克利分校环境结构中心主任克里斯托夫·亚历山大(Chri ...

  7. 【知乎】WinForm 与 WPF的区别

    你想上班 那么针对公司需求学如果只是自己写着玩 那么区分一下1.你的程序运行在 自己机器a.一个工具而已 要的是cooooooool 那么WPFb.一个工具而已 要的是useful easy 那么wi ...

  8. mybatis源码分析(三)------------映射文件的解析

    本篇文章主要讲解映射文件的解析过程 Mapper映射文件有哪几种配置方式呢?看下面的代码: <!-- 映射文件 --> <mappers> <!-- 通过resource ...

  9. hashCode和equals的关系分析

    hashCode:说白了,简单的就看做一个函数,但是该函数有可能出现:对于某个x值,存在不止一个y值与之对应.这种情况就叫哈希碰撞. 那么: 1.如果hashCode相等,两个对象不一定是同一个对象( ...

  10. 关于js的书写

    <li> <label>工号:</label> <input id="uidarr" type='text' onclick=" ...