【BZOJ5305】[HAOI2018]苹果树(组合计数)
【BZOJ5305】[HAOI2018]苹果树(组合计数)
题面
题解
考虑对于每条边计算贡献。每条边的贡献是\(size*(n-size)\)。
对于某个点\(u\),如果它有一棵大小为\(K\)的子树的话,考虑方案数。
首先要从剩下的\(n-u\)个点中选出\(K\)个点作为这棵子树,那么选择方案数是\({n-u\choose K}\),构树的方案数是\(K!\)。除了这些点外,还剩下\(n-u-K\)个点,他们随意的方案数我们这样考虑,首先把选出来的\(K\)个点拿出来,余下的点顺次考虑。因为不能和那\(K\)个点同时放在一棵子树内,因此第\(1\)个点可以选择的方案数是\(u\),下一个是\(u+1\),第\(n-u-K\)个的方案数是\(u+n-u-k-1\),全部乘起来之后方案数就是\(\frac{(n-K-1)!}{(i-1)!}\)。
因此答案就是
\]
最后那个除法变成组合数乘阶乘的形式就可以了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 2050
int n,MOD,C[MAX][MAX],jc[MAX],ans;
int main()
{
cin>>n>>MOD;
for(int i=0;i<=n;++i)C[i][0]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%MOD;
jc[0]=1;for(int i=1;i<=n;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<=n;++i)
for(int j=1;j<=n-i;++j)
ans=(ans+2ll*(n-j)*j*jc[i]%MOD*C[n-i][j]%MOD*jc[j]%MOD*C[n-j-1][i-1]%MOD*jc[n-j-i]%MOD)%MOD;
cout<<ans<<endl;
return 0;
}
【BZOJ5305】[HAOI2018]苹果树(组合计数)的更多相关文章
- BZOJ.5305.[HAOI2018]苹果树(组合 计数)
LOJ BZOJ 洛谷 BZOJ上除了0ms的Rank1啦.明明这题常数很好优化的. 首先,\(n=1\)时有\(2\)个位置放叶子,\(n=2\)时有\(3\)个... 可知\(n\)个点的有标号二 ...
- luoguP4492 [HAOI2018]苹果树 组合计数 + dp
首先,每个二叉树对应着唯一的中序遍历,并且每个二叉树的概率是相同的 这十分的有用 考虑\(dp\)求解 令\(f_i\)表示\(i\)个节点的子树,根的深度为\(1\)时,所有点的期望深度之和(乘\( ...
- BZOJ 5305: [Haoi2018]苹果树 组合计数
一定要注意要乘阶乘,细节很多. code: #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s ...
- [HAOI2018]苹果树(组合数学,计数)
[HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...
- [BZOJ5305] [HAOI2018] 苹果树 数学 组合计数
Summary 题意很清楚: 小 \(C\) 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 \(C\) 发现每一天这棵树都会生长出一个新的结点. 第一天的时候 ...
- [BZOJ5305][HAOI2018]苹果树(DP)
首先注意到每种树都是等概率出现的,于是将问题转化成计数求和问题. f[n]表示所有n个点的树的两两点距离和的总和. g[n]表示所有n个点的树的所有点到根的距离和的总和. h[n]表示n个点的树的可能 ...
- BZOJ5305 HAOI2018苹果树(概率期望+动态规划)
每种父亲编号小于儿子编号的有标号二叉树的出现概率是相同的,问题相当于求所有n个点的此种树的所有结点两两距离之和. 设f[n]为答案,g[n]为所有此种树所有结点的深度之和,h[n]为此种树的个数. 枚 ...
- BZOJ5305 [Haoi2018]苹果树 【组合数学】
题目链接 BZOJ5305 题解 妙啊 要求的是所有可能的树形的所有点对距离和 直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献 考虑一条边会产生多少贡献 我们枚举\(i\)节点的 ...
- [BZOJ5305][Haoi2018]苹果树 组合数
题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一 ...
- [BZOJ5305][HAOI2018]苹果树 组合数学
链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, ...
随机推荐
- 分布式ID生成系统 UUID与雪花(snowflake)算法
Leaf——美团点评分布式ID生成系统 -https://tech.meituan.com/MT_Leaf.html 网游服务器中的GUID(唯一标识码)实现-基于snowflake算法-云栖社区-阿 ...
- C调用C++, C++调用C方法
1. C 调用 C++封装好后的函数: -> 在C++中有一个函数 int main_cpp(): -> 首先构建头文件, #ifndef CPP_FILE_H #define CPP ...
- Dart语法基础
hello world // Define a function. printNumber(num aNumber) { print('The number is $aNumber.'); // Pr ...
- Java-Spring-获取Request,Response对象
转载自:https://www.cnblogs.com/bjlhx/p/6639542.html 第一种.参数 @RequestMapping("/test") @Response ...
- 我和我的小伙伴们都惊呆了!基于Canvas的第三方库Three.js
What is Three.js three + js 表示运行在浏览器上的3D程序 javascript的计算能力因为google的V8引擎得到了迅猛提升 做服务器都没问题了 更别说3D了 哈哈 ...
- shit iview docs & i-radio bug
shit iview docs & i-radio bug https://github.com/iview/iview/issues/5627 <i-row> <i-col ...
- Antd & ice
Antd & ice Angular https://github.com/NG-ZORRO/ng-zorro-antd https://ng.ant.design/docs/introduc ...
- dw擴展jquery
https://jingyan.baidu.com/article/90895e0fbbb65764ec6b0bd1.html
- Ajax之Jquery封装使用举例
<html> <head> <meta charset="UTF-8"> <title>登陆页面</title> < ...
- linux查找符合条件的文件并删除
找到根目录下所有的以test开头的文件并把查找结果当做参数传给rm -rf命令进行删除: 1.find / -name “test*” |xargs rm -rf 2.find / -name “te ...