【BZOJ4408】[FJOI2016]神秘数(主席树)
【BZOJ4408】[FJOI2016]神秘数(主席树)
题面
题解
考虑只有一次询问。
我们把所有数排个序,假设当前可以表示出的最大数是\(x\)。
起始\(x=0\)。
依次考虑接下来的每个数\(a_i\),如果\(a_i\le x\),那么没有啥问题,\(x+=a_i\)。
如果\(a_i=x+1\),那么也没有问题,\(x+=a_i\)。
如果\(a_i>x\),那么\(x+1\)就拼不出来了。
那么显然考虑每次询问,首先把所有\(\le x\)的数全部加进来,然后考虑下一个比\(x\)大的数,如果其大于\(x+1\),那么直接就\(GG\)了。
否则等于\(x+1\),意味着\(x\)至少要翻一倍。
因此最多执行\(log\)次翻倍的操作。
抄起主席树暴力维护就好了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 100100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Node{int ls,rs,v;}t[MAX*35];int tot;
void Modify(int &x,int l,int r,int p)
{
t[++tot]=t[x];x=tot;t[x].v+=p;
if(l==r)return;int mid=(l+r)>>1;
if(p<=mid)Modify(t[x].ls,l,mid,p);
else Modify(t[x].rs,mid+1,r,p);
}
int Query(int x,int y,int l,int r,int p)
{
if(l==r)return t[x].v-t[y].v;int mid=(l+r)>>1;
if(p<=mid)return Query(t[x].ls,t[y].ls,l,mid,p);
else return Query(t[x].rs,t[y].rs,mid+1,r,p)+t[t[x].ls].v-t[t[y].ls].v;
}
int n,m,a[MAX],rt[MAX];
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)Modify(rt[i]=rt[i-1],1,1e9,a[i]);
m=read();
while(m--)
{
int l=read(),r=read(),x=0;
while(x<1e9)
{
int v=Query(rt[r],rt[l-1],1,1e9,x+1);
if(v==x)break;x=v;
}
printf("%d\n",x+1);
}
return 0;
}
【BZOJ4408】[FJOI2016]神秘数(主席树)的更多相关文章
- P4587 [FJOI2016]神秘数(主席树)
题意:给出1e5个数 查询l,r区间内第一个不能被表示的数 比如1,2,4可以用子集的和表示出[1,7] 所以第一个不能被表示的是8 题解:先考虑暴力的做法 把这个区间内的数字按从小到大排序后 从前往 ...
- LUOGU P4587 [FJOI2016]神秘数(主席树)
传送门 解题思路 如果区间内没有\(1\),那么答案就为\(1\),从这一点继续归纳.如果区间内有\(x\)个\(1\),设区间内\([2,x+1]\)的和为\(sum\),如果\(sum=0\),那 ...
- [[FJOI2016]神秘数][主席树]
明白之后 5min 就写好了-自闭- 这题的题意是问你 \([L,R]\) 区间的数字不能构成的数字的最小值- 首先考虑 如果 \([1,x]\) 可以被表示 那么加入一个 \(a_i\) 显然 \( ...
- (bzoj4408)[FJOI2016]神秘数(可持久化线段树)
(bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...
- BZOJ4408&4299[Fjoi 2016]神秘数——主席树
题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...
- 【bzoj4408】[Fjoi 2016]神秘数 主席树
题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 = 4+1+1 ...
- [bzoj4408][Fjoi2016]神秘数
Description 一个可重复数字集合$S$的神秘数定义为最小的不能被$S$的子集的和表示的正整数. 例如$S={1,1,1,4,13}$, $1=1$, $2=1+1$, $3=1+1+1$, ...
- BZOJ 4408: [Fjoi 2016]神秘数 [主席树]
传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...
- 题解【bzoj4587 & bzoj4408 [FJOI2016]神秘数】
Description \(n\) 个数的序列,每次询问一个区间,求最小的一个数使得不能用这个区间中的数之和表示. \(n \leq 10^5, \sum a_i \leq 10^9\) 这两个题一个 ...
- BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题
Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...
随机推荐
- Java面试题详解三:比较器
一,Comparable和Comparator1.Comparable可以认为是一个内比较器,实现了Comparable接口的类有一个特点,就是这些类是可以和自己比较.Comparable接口中只有一 ...
- redis 运维手册
redis cli命令 - milkty - 博客园https://www.cnblogs.com/kongzhongqijing/p/6867960.html Redis多个数据库 - EasonJ ...
- js创建并下载文件
先上代码: function createAndDownloadFile(fileName, content) { var aTag = document.createElement('a'); va ...
- 通过event记录sql
providers EventServiceProvider.php 添加 protected $listen = [ 'Illuminate\Database\Events\QueryExecute ...
- [转帖]web安全:通俗易懂,以实例讲述破解网站的原理及如何进行防护!如何让网站变得更安全。
web安全:通俗易懂,以实例讲述破解网站的原理及如何进行防护!如何让网站变得更安全. https://www.cnblogs.com/1996V/p/7458377.html 感谢原作者写的内容 安全 ...
- QTP 自动化测试--点滴 获取datatable数值/dafault文件位置
0 设置default.xls文件位置 右键项目-settings-resources-datatable-选择 数据表的位置如图 心得:同一个项目-分成多个测试项目-这些测试项目可以共用同一张数据表 ...
- Ubuntu16.04网络不能访问解决办法
问题: 系统重启后,网络不能正常使用,加载网络配置失败,且重启网络时也提示错误. 解决方法: 在定位的过程中发现是配置中的网络设备号与实际设备号不符. 1.查看网络配置中的配备号: vi /etc ...
- Lodop打印如何隐藏table某一列
Lodop打印超文本,既可以打印页面上存在的某些部分,也可以自己组织超文本和css样式传入,有些需要打印的页面表格里,会有一列有编辑删除等按钮,用于对于数据库数据的操作,在打印的时候,这一列由于不属于 ...
- [离散时间信号处理学习笔记] 8. z逆变换
z逆变换的计算为下面的复数闭合曲线积分: $x[n] = \displaystyle{\frac{1}{2\pi j}}\oint_{C}X(z)z^{n-1}dz$ 式中$C$表示的是收敛域内的一条 ...
- Nginx geoip模块
需要编译进 --with-http_geoip_module 首先要安装maxMind里的geoip的c开发库 https://dev.maxmind.com/geoip/legacy/downloa ...