题目大意

  给定一个由且仅由字符'H','T'构成的字符串\(S\)。

​  给定一个最初为空的字符串\(T\) ,每次随机地在\(T\)的末尾添加'H'或者'T'。

  问当\(S\)为\(T\)的后缀时,在末尾添加字符的期望次数。

  对\({10}^9+7\)取模

题解

  设\(f_i\)为从\(i-1\)匹配到\(i\)期望的匹配次数,\(g_i\)表示匹配到\(i\)后下一次失配能匹配到什么位置(用KMP求),\(s_i=\sum_{j=1}^if_j\)

  考虑匹配到第\(i\)位的情况:

\[f_i=\frac12\times 1+\frac12(1+f_{g_{i-1}+1}+f_{g_{i-1}+2}+\cdots f_{i})\\
f_i=2+s_{i-1}-s_{g_{i-1}}
\]

  答案为\(s_n\)

  时间复杂度:\(O(n)\)

代码


【XSY2472】string KMP 期望DP的更多相关文章

  1. string (KMP+期望DP)

    Time Limit: 1000 ms   Memory Limit: 256 MB Description  给定一个由且仅由字符 'H' , 'T' 构成的字符串$S$. 给定一个最初为空的字符串 ...

  2. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  3. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  4. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  5. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  6. uva11600 状压期望dp

    一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...

  7. 期望dp专题

    一直不明白为什么概率是正推,期望是逆推. 现在题目做多了,慢慢好像有点明白了 poj2096 收集bug,  有n个种类的bug,和s个子系统.  每找到一个bug需要一天. 要我我们求找到n个种类的 ...

  8. 【高斯消元】兼 【期望dp】例题

    [总览] 高斯消元基本思想是将方程式的系数和常数化为矩阵,通过将矩阵通过行变换成为阶梯状(三角形),然后从小往上逐一求解. 如:$3X_1 + 2X_2 + 1X_3 = 3$ $           ...

  9. 【期望DP】

    [总览] [期望dp] 求解达到某一目标的期望花费:因为最终的花费无从知晓(不可能从$\infty$推起),所以期望dp需要倒序求解. 设$f[i][j]$表示在$(i, j)$这个状态实现目标的期望 ...

随机推荐

  1. BZOJ1969 航线规划

    给定一个无向图,每次删除一条边,求每次有多少关键边.一条边是关键边,当且仅当从1到n的所有路径都包含这条边.所有时刻图都联通. 考虑倒着做.相当于给一棵树,每次加一条边,这样树上这条边的两个端点间的路 ...

  2. 009-定时关闭弹出广告窗口 By BoAi 20190414

    ;~ 定时关闭弹出广告窗口 By BoAi 20190414 ; ### 参数设置段 ######################################SingleInstance,forc ...

  3. R语言绘制直方图,

    直方图: 核密度函数: 练习题目1: 绘制出15位同学体重的直方图和核密度估计图,并与正态分布的概率密度函数作对比 代码如下: > w <- c(75.0, 64.0, 47.4, 66. ...

  4. 蒲公英App开发之检测新版本

    https://www.jianshu.com/p/2d3f048511d7 2017.04.17 16:22* 字数 62 阅读 422评论 0喜欢 1 可以在App内部实现检测版本更新并实现安装. ...

  5. httpd sshd firewalld 服务后面的d的意思

    在操作系统中,一般系统的服务都是以后台进程的方式存在,而且都会常驻系统中,直到关机才结束.这类服务也称Daemon,在Linux系统中就包含许多的Daemon. 判断Daemon最简单的方法就是从名称 ...

  6. gulp项目和webpack项目在浏览器中查看的方式

    在存在.git的目录下,按住shift+左键,打开命令行或者使用git Bash Gulp: 输入gulp dev 本地起一个服务器,在项目中找到gulp.js,然后找本地服务器,找到host和por ...

  7. java 从键盘录入的三种方法

    详细内容连接 https://blog.csdn.net/StriverLi/article/details/52984066

  8. Android——MaterialDesign之三NavigationView

    NavigationView的使用 这里我们来讲讲在Android5.0之后推出的NavigationView的具体使用方式.和普通的侧拉菜单制作方式一样,首先所有的东西还是都放在一个DrawerLa ...

  9. Hbase API

  10. PLSQL 错误问题:ora-12154:TNS:could not resolve the connect identifier

    错误问题: ORA-12154: TNS:could not resolve the connect identifier specified 即无法解析指定的连接,这说明缺少了一个环境变量,TNS_ ...