Numpy与Matplotlib
一、Numpy
numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库!
numpy比Python列表更具优势,其中一个优势便是速度。在对大型数组执行操作时,numpy的速度比Python列表的速度快了好几百。因为numpy数组本身能节省内存,并且numpy在执行算术、统计和线性代数运算时采用了优化算法。
numpy的另一个强大功能是具有可以表示向量和矩阵的多维数组数据结构。numpy对矩阵运算进行了优化,使我们能够高效地执行线性代数运算,使其非常适合解决机器学习问题。
与Python列表相比,numpy具有的另一个强大优势是具有大量优化的内置数学函数。这些函数使你能够非常快速地进行各种复杂的数学计算,并且用到很少代码(无需使用复杂的循环),使程序更容易读懂和理解。
1、简单创建数组
a = [1, 2, 3]
b = np.array(a)
c = np.array([[0, 1, 2, 10],
[12, 13, 100, 101],
[102, 110, 112, 113]], int)
print(c)
print(b)
2、创建随机数组
array_rand = np.random.rand(10, 10, 4)
print(array_rand)
print(array_rand.ndim)
3、数组的复制
after_array = array_normal[:3, 2:4].copy()
copy_array = np.copy(array_normal[:, 2:4])
4、数组运算
# 循环数组行和列,每一个数值都加5
score[:, :] = score[:, :]+5
print(score)
# 循环数组行和列,每一个数值都减5
score[:, :] = score[:, :]-5
print(score)
# 循环数组行和列,每一个数值都乘以5
score[:, :] = score[:, :]*5
print(score)
# 循环数组行和列,每一个数值都除以5
score[:, :] = score[:, :]/5
print(score)
# 循环数组行和列,每一个数值除以5取整
score[:, :] = score[:, :] // 5
print(score)
# 循环数组行和列,每一个数值除以5取模
score[:, :] = score[:, :] % 5
print(score)
二、Matplotlib
Matplotlib 是Python中类似 MATLAB 的绘图工具,熟悉 MATLAB 也可以很快的上手 Matplotlib。
1、matplotlib图标正常显示中文
import matplotlib.pyplot as plt
plt.rcParams['font.sas-serig']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
2、为项目设置matplotlib参数
配置文件包括以下配置项
axex: 设置坐标轴边界和表面的颜色、坐标刻度值大小和网格的显示
backend: 设置目标暑促TkAgg和GTKAgg
figure: 控制dpi、边界颜色、图形大小、和子区( subplot)设置
font: 字体集(font family)、字体大小和样式设置
grid: 设置网格颜色和线性
legend: 设置图例和其中的文本的显示
line: 设置线条(颜色、线型、宽度等)和标记
patch: 是填充2D空间的图形对象,如多边形和圆。控制线宽、颜色和抗锯齿设置等。
savefig: 可以对保存的图形进行单独设置。例如,设置渲染的文件的背景为白色。
verbose: 设置matplotlib在执行期间信息输出,如silent、helpful、debug和debug-annoying。
xticks和yticks: 为x,y轴的主刻度和次刻度设置颜色、大小、方向,以及标签大小。
3、颜色
可以通过调用matplotlib.pyplot.colors()得到matplotlib支持的所有颜色。
|
别名 |
颜色 |
别名 |
颜色 |
|
b |
蓝色 |
g |
绿色 |
|
r |
红色 |
y |
黄色 |
|
c |
青色 |
k |
黑色 |
|
m |
洋红色 |
w |
白色 |
三、雷达图
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.family']='SimHei'#方便中文能够显示出来
matplotlib.rcParams['font.sans-serif']=['SimHei']
labels=np.array(['第一次作业','第二次作业','第三次作业','第四次作业','第五次作业','第六次作业'])#标签名
nAttr=6#雷达图中六边形边数
data = np.array([5,10,9,10,10,7])#雷达图中标签的数据值
angles = np.linspace(0,2*np.pi,nAttr,endpoint=False)#一哥标签点到另一个标签点画笔所需旋转的角度值,取决于nAttr的大小
data = np.concatenate((data,[data[0]]))
angles = np.concatenate((angles,[angles[0]]))
fig = plt.figure(facecolor="white" )
plt.subplot(111,polar=True)
plt.plot(angles,data,'bo-',color='g',linewidth=2)#画出雷达图中不规则的六边形
plt.fill(angles,data,facecolor='g',alpha=0.25)#填充半透明颜色,即不规则的六边形颜色
plt.thetagrids(angles*180/np.pi,labels)#为雷达图设置标签,就是labels里的文字
plt.figtext(0.52,0.95,'em对的——成绩表',ha='center')#命名雷达图的名字
plt.grid(True)
plt.savefig('作业成绩雷达图.JPG')#保存雷达图的图片
plt.show()
效果如下图所示

四、手绘图效果
from PIL import Image
import numpy as np
vec_el = np.pi/3.3# 光源的俯视角度,弧度值
vec_az = np.pi/9#光源的方位角度,弧度值
depth = 5#(0-100)值越大,整体画面灰度值较深,有近似浮雕的效果;值越小,背景区域接近白色
im = Image.open('Wade.png').convert('L')
a = np.asarray(im).astype('float')
grad = np.gradient(a)#取图像灰度的梯度值
grad_x,grad_y = grad#分别取横纵图像梯度值
grad_x = grad_x+depth/100.
gred_y = grad_y+depth/100.
dx = np.cos(vec_el)*np.cos(vec_az)#光源对x轴的影响
dy = np.cos(vec_el)*np.cos(vec_az)#光源对y轴的影响
dz = np.sin(vec_el) #光源对z轴的影响
A = np.sqrt(grad_x**2+grad_y**2+1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A
a2 = 255*(dx*uni_x+dy*uni_y+dz*uni_z)#光源归一化
a2 = a2.clip(0,255)#预防溢出0~255这个区间
im2 = Image.fromarray(a2.astype('uint8'))#重构图像
im2.save('Wade6.png')
原图如下

运行程序后,如下

以及各种效果如下:


Numpy与Matplotlib的更多相关文章
- win7系统下python安装numpy,matplotlib,scipy和scikit-learn
1.安装numpy,matplotlib,scipy和scikit-learn win7系统下直接采用pip或者下载源文件进行安装numpy,matplotlib,scipy时会遇到各种问题,这是因为 ...
- 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇
始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入 ...
- 在Ubuntu 14.04 64bit上安装numpy和matplotlib库
原文:http://blog.csdn.net/tao_627/article/details/44004541 按照这个成功安装! 机器学习是数据挖掘的一种实现形式,在学习<机器学习实战> ...
- 安装Numpy和matplotlib
(1)测试程序 这是我从网上(http://www.open-open.com/lib/view/open1393488232380.html)找到的一个使用Numpy和matplotlib的 ...
- Linux入门(10)——Ubuntu16.04使用pip3和pip安装numpy,scipy,matplotlib等第三方库
安装Python3第三方库numpy,scipy,matplotlib: sudo apt install python3-pip pip3 install numpy pip3 install sc ...
- 教你如何绘制数学函数图像——numpy和matplotlib的简单应用
numpy和matplotlib的简单应用 一.numpy库 1.什么是numpy NumPy系统是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表 ...
- python 数据分析工具之 numpy pandas matplotlib
作为一个网络技术人员,机器学习是一种很有必要学习的技术,在这个数据爆炸的时代更是如此. python做数据分析,最常用以下几个库 numpy pandas matplotlib 一.Numpy库 为了 ...
- 使用numpy与matplotlib.pyplot画图
使用numpy与matplotlib.pyplot画图 1. 折线图 1 # -*- enccoding:utf-8 -*- 2 import numpy as np 3 import matplot ...
- numpy 与 matplotlib 的应用
numpy 与 matplotlib 的应用 一.库函数介绍 1. numpy库 NumPy(Numeric Python)提供了一个N维的数组类型ndarray,Numpy底层使用C语言编写,内部解 ...
- ubuntu18.04下安装Anaconda及numpy、matplotlib
为了学习深度学习,我需要首先掌握利用python进行科学计算的知识,顺便复习一下线性代数.微积分.概率论.当然,现在我要做的是安装Anaconda. 1.官网下载,linux版本:https://ww ...
随机推荐
- eclipse/idea远程调试Linux程序
第一步.在Tomcat的bin目录下的startup.sh文件的倒数第二行增加“JPDA_ADDRESS=8787”,最后一行在start的前边增加“jpda”,之后重启Tomcat 第二步.配置Ec ...
- 《Dare To Dream 》第三次作业--团队项目的原型设计与开发
一.实验目的与要求 1.掌握软件原型开发技术: 2.学习使用软件原型开发工具: 二.实验内容与步骤 任务1:针对实验六团队项目选题,采用适当的原型开发工具设计团队项目原型: 任务2:在团队博客发布博 ...
- Post提交带参网址
前端 $(function(){ var obj=$('#form1'); obj.validate({ submitHandler: function (form){ var data={}; da ...
- 最大矩阵(简单DP)
见题: 很水的一题,数据范围太小,前缀和加爆搜就行. #include<bits/stdc++.h> using namespace std; ; ,m,n,sum[maxn][maxn] ...
- fair scheduler配置
<property> <name>yarn.resourcemanager.scheduler.class</name> <value>or ...
- Spring:事务
摘要 本文摘抄了Spring事务相关的一些理论,主要讲述事务的特性.事务的传播行为.事务的隔离规则. 关键词:事务特性,事务传播,事务隔离 一.什么是事务 事务是用来保证数据的完整性和一致性,正如金钱 ...
- MySQL8.0.15安装教程(Windows)
下载 第一步 去官网下载社区版本(GPL版本) 第二步 不登录,直接选下方的跳过 下载解压后 配置系统环境变量 复制解压后的mysql到C盘或者其他磁盘下 我们去系统的环境变量的path里添加一个my ...
- 第四周博客作业 <西北师范大学| 周安伟>
一,助教博客链接https://home.cnblogs.com/u/zaw-315/ 二,本周点评作业量点评23份,对提交的优秀作业代码进行运行一份博客问题无法点评问题博客链接:https://ww ...
- css3-study-new
不错的:http://c7sky.com/works/css3slides/#28
- myhabits where in foreach
myhabits传入参数:类,其中类中包含字符串数组String[] 当查询where in String[]时 <select id="selectData" parame ...