NN representation

这一课主要是讲3层神经网络

  

  

下面是常见的 activation 函数.sigmoid, tanh, ReLU, leaky ReLU.

  

Sigmoid 只用在输出0/1 时候的output layer, 其他情况基本不用,因为tanh 总是比sigmoid 好.

两种 ReLU 使用起来总是要比sigmoid 和 tanh 快。ReLU 是最常用的 activation.

  

为什么Activation function 要是non-linear的?因为如下图所示如果activation 是linear的,那么最终output 只是 input 的线性函数.

   

Gradient of activation function

  

  

  

  

Gredient of 2 layer NN.

  

  

Random initialization

  

Coursera, Deep Learning 1, Neural Networks and Deep Learning - week3, Neural Networks Basics的更多相关文章

  1. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  2. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  3. 课程一(Neural Networks and Deep Learning),第四周(Deep Neural Networks) —— 3.Programming Assignments: Deep Neural Network - Application

    Deep Neural Network - Application Congratulations! Welcome to the fourth programming exercise of the ...

  4. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset

    Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...

  5. Neural Networks and Deep Learning

    Neural Networks and Deep Learning This is the first course of the deep learning specialization at Co ...

  6. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  7. 《Neural Networks and Deep Learning》课程笔记

    Lesson 1 Neural Network and Deep Learning 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第一门课程的课程笔记. 参考了其他人的笔记继续归纳 ...

  8. 第四节,Neural Networks and Deep Learning 一书小节(上)

    最近花了半个多月把Mchiael Nielsen所写的Neural Networks and Deep Learning这本书看了一遍,受益匪浅. 该书英文原版地址地址:http://neuralne ...

  9. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals

    Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...

  10. 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 3.Programming Assignment : Planar data classification with a hidden layer

    Planar data classification with a hidden layer Welcome to the second programming exercise of the dee ...

随机推荐

  1. 解题:CF622F The Sum of the k-th Powers

    题面 TJOI2018出CF原题弱化版是不是有点太过分了?对,就是 TJOI2018 教科书般的亵渎 然而我这个问题只会那个题的范围的m^3做法 回忆一下1到n求和是二次的,平方求和公式是三次的,立方 ...

  2. http 请求头和响应头

    客户端发送请求过程带着的数据: 1.请求地址 2.请求方式 3.请求头 request headers 4.请求参数 https://www.juhe.cn/ 130.... 1a2b....pei ...

  3. 点赞功能与redis

    转:https://edu.aliyun.com/a/20538 摘要: 前言点赞其实是一个很有意思的功能.基本的设计思路有大致两种, 一种自然是用mysql等数据库直接落地存储, 另外一种就是利用点 ...

  4. hystrix项目实战

    闲话少说: 总共分6步: (1)添加hystrix依赖以及监控的依赖 <dependency> <groupId>org.springframework.cloud</g ...

  5. scrapy关键字爬取百度图库(一)

    刚入门学习python的菜鸟,如有错误,还望指教 爬取百度图库需要知道百度图库的加载方式是通过下拉加载的,所以我们需要分析Ajax请求来爬取每一页的数据信息 表述不清直接上图片 图片一是刷新页面后加载 ...

  6. (二叉树 BFS DFS) leetcode 104. Maximum Depth of Binary Tree

    Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...

  7. (string 数组) leetcode 804. Unique Morse Code Words

    International Morse Code defines a standard encoding where each letter is mapped to a series of dots ...

  8. [Luogu 1262] 间谍网络

    题目描述 由于外国间谍的大量渗入,国家安全正处于高度的危机之中.如果A间谍手中掌握着关于B间谍的犯罪证据,则称A可以揭发B.有些间谍收受贿赂,只要给他们一定数量的美元,他们就愿意交出手中掌握的全部情报 ...

  9. IIS 错误:由于扩展配置问题而无法提供您请求的页面。如果该页面是脚本,请添加处理程序。如果应下载文件,请添加 MIME 映射。

    HTTP 错误 404.3 - Not Found 由于扩展配置问题而无法提供您请求的页面.如果该页面是脚本,请添加处理程序.如果应下载文件,请添加 MIME 映射. 可能是缺少处理程序映射.默认情况 ...

  10. CodeForces149D dfs实现区间dp

    http://codeforces.com/problemset/problem/149/D 题意 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选 ...