NN representation

这一课主要是讲3层神经网络

  

  

下面是常见的 activation 函数.sigmoid, tanh, ReLU, leaky ReLU.

  

Sigmoid 只用在输出0/1 时候的output layer, 其他情况基本不用,因为tanh 总是比sigmoid 好.

两种 ReLU 使用起来总是要比sigmoid 和 tanh 快。ReLU 是最常用的 activation.

  

为什么Activation function 要是non-linear的?因为如下图所示如果activation 是linear的,那么最终output 只是 input 的线性函数.

   

Gradient of activation function

  

  

  

  

Gredient of 2 layer NN.

  

  

Random initialization

  

Coursera, Deep Learning 1, Neural Networks and Deep Learning - week3, Neural Networks Basics的更多相关文章

  1. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  2. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  3. 课程一(Neural Networks and Deep Learning),第四周(Deep Neural Networks) —— 3.Programming Assignments: Deep Neural Network - Application

    Deep Neural Network - Application Congratulations! Welcome to the fourth programming exercise of the ...

  4. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset

    Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...

  5. Neural Networks and Deep Learning

    Neural Networks and Deep Learning This is the first course of the deep learning specialization at Co ...

  6. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  7. 《Neural Networks and Deep Learning》课程笔记

    Lesson 1 Neural Network and Deep Learning 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第一门课程的课程笔记. 参考了其他人的笔记继续归纳 ...

  8. 第四节,Neural Networks and Deep Learning 一书小节(上)

    最近花了半个多月把Mchiael Nielsen所写的Neural Networks and Deep Learning这本书看了一遍,受益匪浅. 该书英文原版地址地址:http://neuralne ...

  9. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals

    Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...

  10. 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 3.Programming Assignment : Planar data classification with a hidden layer

    Planar data classification with a hidden layer Welcome to the second programming exercise of the dee ...

随机推荐

  1. 洛谷P3620 数据备份

    好吧,我一开始说这是个神级数据结构毒瘤题,后来改成神题了. 主要是贪心做法的巧妙转化: 首先发现选择的一对必须相邻,于是我们搞出差分. 然后考虑选取最小值时,最小值两侧的数要么同时选,要么都不选. 然 ...

  2. ImageMagick: 6.8.3 升级到 6.8.9 遇到的问题

    最终还是决定升级到目前最新版:6.8.9,不知何时才真正明白为什么现在都是java8,但还是有很多软件系统使用在java5上. 虽然新版本能带来各种好处,但现实中不能忽略一个问题:原来的代码很可能无法 ...

  3. 第四篇:记录相关操作 SQL逻辑查询语句执行顺序

    http://www.cnblogs.com/linhaifeng/articles/7372774.html 一 SELECT语句关键字的定义顺序 SELECT DISTINCT <selec ...

  4. windows环境下 安装python2和python3

    一.  python 安装 1. 下载安装包 https://www.python.org/ftp/python/2.7.14/python-2.7.14.amd64.msi # 2.7安装包 htt ...

  5. Codeforce 867 C. Ordering Pizza (思维题)

    C. Ordering Pizza It's another Start[c]up finals, and that means there is pizza to order for the ons ...

  6. String 中常用的几种方法

    /* String(char[] value)传递字符数组 将字符数组转换为字符串 字符数组不查询编码表 */ public static void fun1(){ char[] ch = {'a', ...

  7. 线程(Thread)

    package cn.gouzao.demo3; public class ThreadDemo extends Thread{ public void run(){ for(int i=0;i< ...

  8. qml: 打包 和 发布

    Qt 提供了打包工具windeployqt, 利用该工具可以很方便的解决qt的依赖问题(注:通过实际验证,发现该工具只能解决大部分的依赖问题,不知道是不是本人 没有正确的使用的问题). qt源码编译r ...

  9. Mysql连接查询、子查询、联合查询 整理

    连接查询 连接语法的基本形式 from 表1  [连接方式]  join 表2  [on 连接条件]: 交叉连接 语法: from  表1  [cross]  join  表2  ;      //可 ...

  10. saltstack syndic

    #syndic 相当于master的代理,master通过syndic代理控制node主机 master <------ syndic+master <---------- node ma ...