题目地址:P2050 [NOI2012]美食节

先来讲一下P2053 [SCOI2007]修车(如果会做请跳过)

同一时刻有 \(N\) 位车主带着他们的爱车来到了汽车维修中心。维修中心共有 \(M\) 位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这 \(M\) 位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。
说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
\(2 \leq M \leq 9,1 \leq N \leq 60,1 \leq T \leq 1000\) 。

费用提前计算

注意到每位车主的等待时间除了跟自己的车所需的维修时间有关之外,还跟同一位技术人员之前维修所花的时间有关,这导致我们很难直观地建模。

但是仔细观察可以发现,一个人维修所花的时间,对同一位技术人员之后的维修造成的影响是已知且固定的。

那么,我们将费用提前计算,即,把第 \(i\) 位车主的车由第 \(j\) 位维修人员倒数第 \(k\) 个维修所花的时间(费用)当作 \(k \times t_{i,j}\) 。

从源点向每位车主连边,容量为 \(1\) ,费用为 \(0\) 。

每位维修人员拆成 \(n\) 个点,向汇点连边,容量为 \(1\) ,费用为 \(0\) 。

第 \(i\) 位车主向第 \(j\) 位维修人员拆成的第 \(k\) 个点连边,容量为 \(1\) ,费用为 \(k \times t_{i,j}\) 。

求最小费用最大流即可。

回到P2050 [NOI2012]美食节

此题为 P2053 [SCOI2007]修车 的数据加强版。
\(N \leq 40,M \leq 100\) 。

P2053 [SCOI2007]修车 的建图方式,但是硬求最小费用最大流只能拿到 \(60\) 分。

动态开点

起初每个厨师只拆成一个点,每次增广时,把当下的厨师拆出一个新点。

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 6, M = 4e7 + 6, inf = 0x3f3f3f3f;
int n, m, s, t, ans, d[N], pre[N], now[N], num, p[N];
int Head[N], Edge[M], Leng[M], Cost[M], Next[M], tot = 1;
bitset<N> v;
int a[46][106];

inline void add(int x, int y, int z, int w) {
    Edge[++tot] = y;
    Leng[tot] = z;
    Cost[tot] = w;
    Next[tot] = Head[x];
    Head[x] = tot;
}

inline bool spfa() {
    v.reset();
    memset(d, 0x3f, sizeof(d));
    queue<int> q;
    q.push(s);
    v[s] = 1;
    d[s] = 0;
    now[s] = inf;
    while (q.size()) {
        int x = q.front();
        q.pop();
        v[x] = 0;
        for (int i = Head[x]; i; i = Next[i]) {
            int y = Edge[i], z = Leng[i], w = Cost[i];
            if (!z || d[y] <= d[x] + w) continue;
            d[y] = d[x] + w;
            now[y] = min(now[x], z);
            pre[y] = i;
            if (!v[y]) {
                q.push(y);
                v[y] = 1;
            }
        }
    }
    return d[t] != inf;
}

inline void upd() {
    ans += d[t] * now[t];
    int x = t;
    while (x != s) {
        int i = pre[x];
        Leng[i] -= now[t];
        Leng[i^1] += now[t];
        x = Edge[i^1];
    }
    x = Edge[pre[t]^1];
    p[++num] = p[x];
    add(num, t, 1, 0);
    add(t, num, 0, 0);
    for (int i = Head[x]; i; i = Next[i]) {
        int y = Edge[i], w = Cost[i^1];
        if (y == t) continue;
        w += a[y][p[x]];
        add(y, num, 1, w);
        add(num, y, 0, -w);
    }
}

int main() {
    cin >> n >> m;
    for (int i = 1; i <= n; i++) {
        int x;
        scanf("%d", &x);
        add(0, i, x, 0);
        add(i, 0, 0, 0);
    }
    num = t = n + m + 1;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++) {
            int x;
            scanf("%d", &x);
            a[i][j] = x;
            add(i, n + j, 1, x);
            add(n + j, i, 0, -x);
        }
    for (int i = 1; i <= m; i++) {
        add(n + i, t, 1, 0);
        add(t, n + i, 0, 0);
        p[n+i] = i;
    }
    while (spfa()) upd();
    cout << ans << endl;
    return 0;
}

P2050 [NOI2012]美食节的更多相关文章

  1. P2050 [NOI2012]美食节(费用流)

    P2050 [NOI2012]美食节 P2053 [SCOI2007]修车的加强版 因为数据较大,一次性把所有边都加完会T 于是我们每次只连需要的边跑费用流 就是开始先连所有厨师做倒数第1道菜 跑费用 ...

  2. 洛谷P2050 [NOI2012]美食节

    动态加边网络流 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring ...

  3. P2050 [NOI2012]美食节 动态连边优化费用流

    题意 类似的一道排队等候,算最小总等待时间的题目. 思路 但是这道题的边数很多,直接跑会tle,可以动态加边,就是先连上倒数第一次操作的边,跑一遍费用流,然后对使用了倒数第一条边的点,连上相应的倒数第 ...

  4. P2050 [NOI2012]美食节 动态加边加点

    修车数据加强版 需要动态加边加点 #include<bits/stdc++.h> using namespace std; const int INF = 0x7f7f7f7f; , MA ...

  5. 洛谷$P2050\ [NOI2012]$美食节 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 昂开始看到$jio$得,哇长得好像上一题嗷$QwQ$ 然后仔细康康数据范围,发现,哇好像要几万个点,,,显然就$GG$了 但感$jio$思路方向好对的亚子? ...

  6. BZOJ 2879: [Noi2012]美食节

    2879: [Noi2012]美食节 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1834  Solved: 969[Submit][Status] ...

  7. BZOJ 2879: [Noi2012]美食节 最小费用流 动态添边

    2879: [Noi2012]美食节 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 324  Solved: 179[Submit][Status] ...

  8. BZOJ 2879: [Noi2012]美食节( 费用流 + 动态加边 )

    倒着做菜..然后考虑为当前的人做菜对后面的人的影响就可以了..要动态加边 --------------------------------------------------------------- ...

  9. 【BZOJ2879】[Noi2012]美食节 动态加边网络流

    [BZOJ2879][Noi2012]美食节 Description CZ市为了欢迎全国各地的同学,特地举办了一场盛大的美食节.作为一个喜欢尝鲜的美食客,小M自然不愿意错过这场盛宴.他很快就尝遍了美食 ...

随机推荐

  1. mysqldump常用备份参数

    #!/bin/sh DUMP=/usr/bin/mysqldump OUT_DIR=/var/ftp/iips/mysqlbak LINUX_USER=root DB_NAME=yfdmbd DB_U ...

  2. PHP手动搭建环境

    php手动搭建环境有好多种组合,版本号不一致,会导致搭建失败. 我搭建的组合是: php5.6+MySQL5.6+Apache2.4的组合. 一.PHP语言包下载 首先从官网上下载php5.6 htt ...

  3. jsp+servlet+jdbc实现表单提交

    1.新建一个maven工程,选webapp模板 2.安装tomcat https://tomcat.apache.org/download-80.cgi 下载解压到自定义目录上 ps:在全局变量加上J ...

  4. 【SQL】SqlServer中Group By后,字符串合并

    参考: 1.SQL查询语句 group by后, 字符串合并 2.sql for xml path用法 #需求: 合并列值 表结构,数据如下: id value ----- ------ aa bb ...

  5. JAVA-获取 JDK 动态代理生成的 Class 文件

    可指定路径 import sun.misc.ProxyGenerator; import java.io.FileOutputStream; import java.io.IOException; i ...

  6. Redis AOF、RDB持久化

    持久化一:RDB方式 默认配置: save 900 1save 300 10save 60 10000 持久化二:AOF方式 默认配置:appendonly no,appendfilename &qu ...

  7. 使用rvm安装与切换Ruby

    列出已知的 Ruby 版本 rvm list known安装一个 Ruby 版本 rvm install 2.3.1 --disable-binary这里安装了最新的 2.2.0, rvm list ...

  8. PHP7 网络编程(一)多进程初探

    准备 我们都知道PHP是单进程执行的,PHP处理多并发主要是依赖服务器或PHP-FPM的多进程及它们进程的复用,但PHP实现多进程也意义重大,尤其是在后台Cli模式下处理大量数据或运行后台DEMON守 ...

  9. webservice 项目中遇到的问题

    redshift database 连接异常 解决方案 url 修改添加参数如下 jdbc:redshift://hostname:5439/dbname?ssl=true&sslfactor ...

  10. SignalR 2.x入门(二):SignalR在MVC5中的使用

    开发(代码下载) 新建一个ASP.NET Web项目,项目类型为MVC,将认证模式改为无身份认证.在程序包管理控制台输入如下语句,安装SignalR <span style="font ...