吴恩达机器学习笔记39-误差分析与类偏斜的误差度量(Error Analysis and Error Metrics for Skewed Classes)
如果你准备研究机器学习的东西,或者构造机器学习应用程序,最好的实践方法
不是建立一个非常复杂的系统,拥有多么复杂的变量;而是构建一个简单的算法,这样你可
以很快地实现它。
构建一个学习算法的推荐方法为:
1. 从一个简单的能快速实现的算法开始,实现该算法并用交叉验证集数据测试这个算
法
2. 绘制学习曲线,决定是增加更多数据,或者添加更多特征,还是其他选择
3. 进行误差分析:人工检查交叉验证集中我们算法中产生预测误差的实例,看看这些实例是否有某种系统化的趋势。
类偏斜情况表现为我们的训练集中有非常多的同一种类的实例,只有很少或没有其他类的实例。
查准率(Precision)和查全率(Recall)
我们将算法预测的结果分成四种情况:
1. 正确肯定(True Positive,TP):预测为真,实际为真
2. 正确否定(True Negative,TN):预测为假,实际为假
3. 错误肯定(False Positive,FP):预测为真,实际为假
4. 错误否定(False Negative,FN):预测为假,实际为真
则:查准率=TP/(TP+FP)。例,在所有我们预测有恶性肿瘤的病人中,实际上有恶性肿
瘤的病人的百分比,越高越好。
查全率=TP/(TP+FN)。例,在所有实际上有恶性肿瘤的病人中,成功预测有恶性肿瘤的
病人的百分比,越高越好。
吴恩达机器学习笔记39-误差分析与类偏斜的误差度量(Error Analysis and Error Metrics for Skewed Classes)的更多相关文章
- [吴恩达机器学习笔记]11机器学习系统设计3-4/查全率/查准率/F1分数
11. 机器学习系统的设计 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 11.3 偏斜类的误差度量 Error Metr ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- Machine Learning——吴恩达机器学习笔记(酷
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...
- [吴恩达机器学习笔记]12支持向量机5SVM参数细节
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...
- [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...
- [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:&quo ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第一周
一.初识机器学习 何为机器学习?A computer program is said to learn from experience E with respect to some task T an ...
随机推荐
- WPF中的数据绑定(初级)
关于WPF中的数据绑定,初步探讨 数据绑定属于WPF中比较核心的范畴,以下是对WPF中数据绑定的一个初步探讨.个人感觉还是带有问题性质的叙述比较高效,也比较容易懂 第一,什么是数据绑定? 假定有这么一 ...
- laravel-更换语言包
第一步:找语言包 找到比较靠谱的语言包(根据下载量与收藏量综合判断),而且要是laravel的 扩展的链接:https://packagist.org/packages/caouecs/laravel ...
- BUAAOO第二单元多线程电梯作业总结
第二单元多线程作业需要保证线程安全
- JAVA实训第二次作业
一维数组的创建和遍历. 声明并创建存放4个人考试成绩的一维数组,并使用for循环遍历数组并打印分数.要求: (1) 首先按"顺序"遍历,即打印顺序为:从第一个人到第四个人: (2) ...
- lllll
- ASP.NET MVC4添加区域视图 找到多个与名为“home”的控制器匹配的类型
今天在项目中遇到一个问题,在MVC下想建立一个区域的后台Boss视图,出现了"找到多个与名为“home”的控制器匹配的类型"的问题,希望下面的解决方案能够帮助到大家 这是网站的整体 ...
- bp代码
#电池老化率测定的神经网络模型 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import pa ...
- springsecurity 源码解读之 AnonymousAuthenticationFilter
我们知道springsecutity 是通过一系列的 过滤器实现的,我们可以看看这系列的过滤器到底长成什么样子呢? 一堆过滤器,这个过滤器的设计设计上是 责任链设计模式. 这里我们可以看到有一个 An ...
- 将Paul替换成Ringo
<!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...
- Day10 (黑客成长日记) Urllib库的使用
什么是Urllib: Urllib是python内置的HTTP请求库包括以下模块urllib.request 请求模块urllib.error 异常处理模块urllib.parse url解析模块ur ...