部分参考自博客:https://blog.csdn.net/hpu2022/article/details/81910490

在许多问题中,由于树结构复杂通常会导致问题很棘手,因为其实非线性结构,操作起来也甚是费时。

例如:对于一棵树,含有n个节点,每个节点拥有相应的权值,我们进行很多个操作,比如可以修改某个节点的权值,查找以某个节点为根节点的子树和。

显然,对于这个问题,每次计算子树权值和时我们都要遍历一下各个节点,而如果我们可以用某种方式把它装化成线性结构,然后再用数组数组或者线段树去更新查询,这样不就可以更高效得多吗?

没错,这就有了我们DFS序,它的主要思路就是将树形结构转化成线性结构,用dfs遍历一遍这棵树,进入到x节点有一个in时间戳,递归退出时有一个out 时间戳,x节点的两个时间戳之间遍历到的点,就是根为x的子树的所有节点,他们的dfs进入时间戳是递增的。同时两个时间戳构成了一个区间,x节点在这段区间的最左端,这个区间就是一棵根节点为x的子树,对于区间的操作就是其他维护方式的应用了。

int time = ;
inline void dfs(int x, int fa) {
in[x] = ++time; //进入的时间戳
num[time] = x; //生成新的线性结构
for(int i = ; i < G[x].size(); i++) {
int cnt = G[x][i];
if(cnt == fa) continue;
dfs(cnt, x);
}
out[x] = time; //出去的时间戳
}

in[x]表示映射的DFS预处理出的线性结构,也就是说x是原始节点,in[x]是x节点的新位置,num[t]表示第t个节点的编号,num[in[x]]表示的还是x。num是新序列,in表示是新序列的下标,in[x]~out[x]是x为根结点的子树,划分为一个区间。

Loj144 DFS序+树状数组单点更新区间查找

题目链接:https://loj.ac/problem/144

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
typedef long long ll;
const ll maxn=1e6+;
int n,q,m,r,tot,cnt;
ll v[maxn],in[maxn],out[maxn],head[maxn],x,num[maxn],sum[maxn];
struct node{
int to,next;
}edge[*maxn];
void add(int u,int v){
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void dfs(int pos,int fa){
num[++cnt]=pos;
in[pos]=cnt;
for(int i=head[pos];i!=-;i=edge[i].next){
int v=edge[i].to;
if(v!=fa) dfs(v,pos);
}
out[pos]=cnt;
}
int lowbit(int x){
return x&(-x);
}
void update(int x,int y){
while(x<=n){
sum[x]+=y;
x+=lowbit(x);
}
}
ll ask(int x){
ll res=;
while(x){
res+=sum[x];
x-=lowbit(x);
}
return res;
}
int main(){
scanf("%d%d%d",&n,&m,&r);
for(int i=;i<=n;i++)
scanf("%lld",&v[i]),head[i]=-;
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v); add(v,u);
}
dfs(r,-);
for(int i=;i<=n;i++)
update(in[i],v[i]);
while(m--){
int op,x,y;
scanf("%d",&op);
if(op==){
scanf("%d%d",&x,&y);
update(in[x],y);
}
else{
scanf("%d",&x);
printf("%lld\n",ask(out[x])-ask(in[x]-));
}
}
return ;
}

Loj 145 DFS序+树状数组区间更新区间查找

题目链接:https://loj.ac/problem/145

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
typedef long long ll;
const ll maxn=1e6+;
int n,q,m,r,tot,cnt;
ll v[maxn],in[maxn],out[maxn],head[maxn],x,num[maxn],sum1[maxn],sum2[maxn];
struct node{
int to,next;
}edge[*maxn];
void add(int u,int v){
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void dfs(int pos,int fa){
num[++cnt]=pos;
in[pos]=cnt;
for(int i=head[pos];i!=-;i=edge[i].next){
int v=edge[i].to;
if(v!=fa) dfs(v,pos);
}
out[pos]=cnt;
}
int lowbit(int x){return x&(-x);}
void update(int x,ll y){
for(int i=x;i<=n;i+=lowbit(i)){
sum1[i]+=y;
sum2[i]+=(x-)*y;
}
}
ll ask(int x){
ll res=;
for(int i=x;i;i-=lowbit(i)){
res+=x*sum1[i]-sum2[i];
}
return res;
}
int main(){
scanf("%d%d%d",&n,&m,&r);
for(int i=;i<=n;i++)
scanf("%lld",&v[i]),head[i]=-;
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v); add(v,u);
}
dfs(r,-);
for(int i=;i<=n;i++)
update(in[i],v[i]-v[num[in[i]-]]);
while(m--){
int op,x,y;
scanf("%d",&op);
if(op==){
scanf("%d%d",&x,&y);
update(in[x],y); update(out[x]+,-y);
}
else{
scanf("%d",&x);
printf("%lld\n",ask(out[x])-ask(in[x]-));
}
}
return ;
}

Libre OJ 144、145 (DFS序)的更多相关文章

  1. Comet OJ - Contest #11 D isaster 重构树+倍增+dfs序+线段树

    发现对于任意一条边,起决定性作用的是节点编号更大的点. 于是,对于每一条边,按照节点编号较大值作为边权,按照最小生成树的方式插入即可. 最后用线段树维护 dfs 序做一个区间查询即可. Code: # ...

  2. BZOJ_4034 [HAOI2015]树上操作 【树链剖分dfs序+线段树】

    一 题目 [HAOI2015]树上操作 二 分析 树链剖分的题,这里主要用到了$dfs$序,这题比较简单的就是不用求$lca$. 1.和树链剖分一样,先用邻接链表建双向图. 2.跑两遍$dfs$,其实 ...

  3. DFS序和7种模型

    DFS序就是将树的节点按照先根的顺序遍历得到的节点顺序 性质:一个子树全在一个连续的区间内,可以与线段树和树状数组搭配使用 很好写,只需在dfs中加几行代码即可. 代码: void dfs(ll u, ...

  4. BZOJ 3083: 遥远的国度 [树链剖分 DFS序 LCA]

    3083: 遥远的国度 Time Limit: 10 Sec  Memory Limit: 1280 MBSubmit: 3127  Solved: 795[Submit][Status][Discu ...

  5. BZOJ 4196: [Noi2015]软件包管理器 [树链剖分 DFS序]

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1352  Solved: 780[Submit][Stat ...

  6. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

  7. 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序

    3779: 重组病毒 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 224  Solved: 95[Submit][Status][Discuss] ...

  8. 【BZOJ-1146】网络管理Network DFS序 + 带修主席树

    1146: [CTSC2008]网络管理Network Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 3495  Solved: 1032[Submi ...

  9. 【Codeforces163E】e-Government AC自动机fail树 + DFS序 + 树状数组

    E. e-Government time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...

随机推荐

  1. 四、Object.defineProperty总结

    Object.defineProperty() 参考:https://segmentfault.com/a/1190000007434923 定义: 方法会直接在一个对象上定义一个新属性,或者修改一个 ...

  2. 数据处理 array json 格式 转换成 数组形式

    处理这种数据应该使用的方式是 this.cities= res.data.data.cities.sort((a,b)=>{ //排序 进行字母排序 return a.pinyin[0].cha ...

  3. Laravel 的十八个最佳实践

    本文翻译改编自 Laravel 的十八个最佳实践 这篇文章并不是什么由 Laravel 改编的 SOLID 原则.模式等. 只是为了让你注意你在现实生活的 Laravel 项目中最常忽略的内容.   ...

  4. css3的clip-path方法剪裁实现

    本例讲解如何通过clip-path把一个div(元素,可以是图片等)裁切成不同的形状,这里以一个div为例宽高均为300px 注意:不支持IE和Firefox,支持webkit浏览器,在现代浏览器中需 ...

  5. PHP5.4.0新特性研究

    PHP5.4.0新特性研究 1.内建Web Server 这的确是个好的改进,大大的方便了开发人员.以后开发机不装nginx,httpd也行 cd $PHP_INSTALL_PATH ./bin/ph ...

  6. python之tips(三)--为什么Python有相同的不可变对象id不同?

    参考 : https://www.jianshu.com/p/0f6f0db0ce8f

  7. CART算法与剪枝原理

    参考:https://blog.csdn.net/u014688145/article/details/53326910 知乎:https://www.zhihu.com/question/22697 ...

  8. hive字符函数

  9. python之路-列表、元组、range

    一 . 列表 # 列表的定义 列表就是能装对象的对象 在python中用[ ]来描述列表,内部元素用逗号隔开,对数据类型没有要求 索引和切片 lst = ["天龙八部", &quo ...

  10. LODOP打印css样式rgba显示黑色区块

    当LODOP打印html超文本出现问题的时候,要删减排查一下样式,查看Lodop传入的内部的html超文本和样式,可查看本博客另一篇博文:删减发现有问题的样式,并解决该问题,尽量使用通用的css样式, ...