传送门


Div 2的比赛,前四题还有那么多人过,应该是SB题,就不讲了。

这场比赛一堆计数题,很舒服。(虽然我没打)

E. The Top Scorer

其实这题也不难,不知道为什么这么少人过。

考虑枚举那人的分数和有多少人和他同分,推一下就会发现我们只需要知道\(calc(sum,n,top)\)表示\(sum\)分,分给\(n\)个人,分数小于\(top\),的方案数。

好像不是很好直接搞,考虑容斥,枚举一下至少有几个人不满足条件即可。

#include<bits/stdc++.h>
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define mod (ll(998244353))
#define sz 10101
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
template<typename T>inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
template<typename T>inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.txt","r",stdin);
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; ll fac[sz],_fac[sz];
void init(){fac[0]=_fac[0]=1;rep(i,1,sz-1) _fac[i]=inv(fac[i]=fac[i-1]*i%mod);}
ll C(int n,int m){return n>=m&&m>=0?fac[n]*_fac[m]%mod*_fac[n-m]%mod:0;} int n,r,s; ll calc(int sum,int n,int top) // sum points for n people , < top
{
if (!n) return sum==0;
ll ret=0;
rep(i,0,n)
{
if (i*top>sum) return ret;
int cur=sum-i*top;
ret=(ret+1ll*((i&1)?-1:1)*C(cur+n-1,n-1)*C(n,i)%mod+mod)%mod;
}
return ret;
} int main()
{
file();
init();
read(n,s,r);
ll tot=C(s-r+n-1,n-1);
ll ans=0;
rep(i,r,s)
{
rep(j,0,n-1)
{
int rest=s-i-i*j;if (rest<0) break;
ans=(ans+calc(rest,n-j-1,i)*C(n-1,j)%mod*inv(j+1)%mod)%mod;
}
}
cout<<ans*inv(tot)%mod;
return 0;
}

F. Inversion Expectation

很容易想到把各个部分的贡献拆开来算。

分成三个部分:已知对已知、未知对未知、未知对已知。

前两个都很好搞,第三个考虑期望的线性性(虽然我不知道那是啥),随便搞搞就好了。

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define mod 998244353ll
#define sz 200220
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int n,m;
int a[sz];
bool vis[sz]; ll tr[sz];
void add(int x,int y){while (x<=n) (tr[x]+=y)%=mod,x+=(x&(-x));}
int query(int x){ll ret=0;while (x) (ret+=tr[x])%=mod,x-=(x&(-x));return ret;}
ll fac[sz]; int main()
{
file();
cin>>n;
rep(i,1,n)
{
cin>>a[i];
if (a[i]==-1) ++m;
}
ll ans=0;
rep(i,1,n) if (a[i]!=-1) (ans+=query(n)-query(a[i]))%=mod,add(a[i],1);
fac[0]=1;rep(i,1,n) fac[i]=fac[i-1]*i%mod;
(ans*=fac[m])%=mod;
(ans+=fac[m]*inv(4)%mod*(1ll*m*(m-1)%mod)%mod)%=mod;
int cnt=0;
rep(i,1,n)
if (a[i]!=-1) (ans+=fac[m-1]*(1ll*cnt*(m+query(a[i])-a[i])%mod+1ll*(m-cnt)*(a[i]-query(a[i]))%mod)%mod)%=mod;
else ++cnt;
cout<<ans*inv(fac[cnt])%mod;
return 0;
}

G. Lucky Tickets

很容易想到枚举两边有多少分。

考虑一个DP:\(dp_{i,j}\)表示前\(i\)位的和为\(j\)的方案数,转移方程显然。

感受一下,这东西就是一个多项式快速幂,就做完了。

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 8010100
#define mod 998244353ll
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int limit,r[sz];
void NTT_init(int n)
{
limit=1;int l=-1;
while (limit<=n+n) limit<<=1,++l;
rep(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
void NTT(ll *a,int type)
{
rep(i,0,limit-1) if (i<r[i]) swap(a[i],a[r[i]]);
rep(i,0,limit-1) a[i]%=mod;
for (int mid=1;mid<limit;mid<<=1)
{
ll Wn=ksm(3,(mod-1)/mid>>1);if (type==-1) Wn=inv(Wn);
for (int j=0,len=mid<<1;j<limit;j+=len)
{
ll w=1;
for (int k=0;k<mid;k++,w=w*Wn%mod)
{
ll x=a[j+k],y=a[j+k+mid]*w;
a[j+k]=(x+y)%mod;a[j+k+mid]=(1ll*mod*mod-y+x)%mod;
}
}
}
if (type==1) return;
ll I=inv(limit);
rep(i,0,limit-1) a[i]=a[i]*I%mod;
} int n,K;
ll a[sz]; int main()
{
file();
read(n,K);
int x;
rep(i,1,K) read(x),a[x]=1;
NTT_init(n*10);
NTT(a,1);
rep(i,0,limit) a[i]=ksm(a[i],n/2);
NTT(a,-1);
ll ans=0;
rep(i,0,n*10) (ans+=a[i]*a[i]%mod)%=mod;
cout<<ans;
return 0;
}

Codeforces Educational Codeforces Round 57 题解的更多相关文章

  1. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  2. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...

  3. Educational Codeforces Round 57题解

    A.Find Divisible 沙比题 显然l和2*l可以直接满足条件. 代码 #include<iostream> #include<cctype> #include< ...

  4. Codeforces Educational Codeforces Round 54 题解

    题目链接:https://codeforc.es/contest/1076 A. Minimizing the String 题意:给出一个字符串,最多删掉一个字母,输出操作后字典序最小的字符串. 题 ...

  5. Codeforces Educational Codeforces Round 5 E. Sum of Remainders 数学

    E. Sum of Remainders 题目连接: http://www.codeforces.com/contest/616/problem/E Description The only line ...

  6. Codeforces Educational Codeforces Round 5 D. Longest k-Good Segment 尺取法

    D. Longest k-Good Segment 题目连接: http://www.codeforces.com/contest/616/problem/D Description The arra ...

  7. Codeforces Educational Codeforces Round 5 C. The Labyrinth 带权并查集

    C. The Labyrinth 题目连接: http://www.codeforces.com/contest/616/problem/C Description You are given a r ...

  8. Codeforces Educational Codeforces Round 5 B. Dinner with Emma 暴力

    B. Dinner with Emma 题目连接: http://www.codeforces.com/contest/616/problem/A Description Jack decides t ...

  9. Codeforces Educational Codeforces Round 5 A. Comparing Two Long Integers 高精度比大小,模拟

    A. Comparing Two Long Integers 题目连接: http://www.codeforces.com/contest/616/problem/A Description You ...

随机推荐

  1. POSIX信号和自定义signal函数

    一.信号的概念 信号(signal)就是告知某个进程发生了某个事件的通知:信号通常是异步发生的,也就是说接受信号的进程不知道信号的准确 发生时刻:信号可以(1)由一个进程发给另一个进程:(2)由内核发 ...

  2. 剑指offer: 数组中的逆序对

    1. 最简单的思路,对每个值,遍历与其逆序的数组对:但时间复杂度太高: 2. 归并排序的思路: 先将数组分隔成子数组,先统计出子数组内的逆序对的数目,然后统计两个相邻子数组之间的逆序对的数目: int ...

  3. PHP操作实现一个多功能购物网站

    PHP操作实现一个多功能购物网站 一.需要实现的页面: Index.aspx:浏览商品页面,显示商品列表,用户可以点击“加入购物车“. ViewCart.aspx:查看购物车页面,显示已购买的商品信息 ...

  4. mysql 5.7 ERROR 1054(42S22) Unknown column 'password' in ‘field list’ 报错

    mysql 忘记密码 报错?ERROR 1054(42S22) Unknown column 'password' in ‘field list’原因:5.7版本下的mysql数据库下已经没有pass ...

  5. 第28月第21天 记事本Unicode 游戏编程中的人工智能技术

    1. Windows平台,有一个最简单的转化方法,就是使用内置的记事本小程序notepad.exe.打开文件后,点击文件菜单中的另存为命令,会跳出一个对话框,在最底部有一个编码的下拉条. 里面有四个选 ...

  6. MySql数据库学习笔记(1)

    MySql数据库 下载地址 https://dev.mysql.com/downloads/mysql/5.1.html#downloads 连接到本机上的MYSQL mysql -u root -p ...

  7. python 的基础 学习第十天函数的初始

    1,什么是函数,函数就是封装一个功能. 怎么定义函数. # def my_len():#def 是关键字,定义一个一个函数.#my_len():就是函数名,必须和关键字加一个空格,后面加括号和冒号.d ...

  8. vue-CLI踩坑记

    vue init webpack vue-demo 使用 windows 7 DOS命令行和gitbash都有选择和实际选择结果不一致的问题, DOS命令行只在 Vue build有问题, gitba ...

  9. linux 不允许多线程共享sqlite句柄

    参考链接: http://blog.csdn.net/liangzhao_jay/article/details/45642085 sqlite3采用文件锁,效率过低. sqlite3采用的3种线程模 ...

  10. linux 僵屍进程

    参考链接 :  http://soft.chinabyte.com/os/5/12172005.shtml