题意

给出一个矩阵,矩阵每行的和必须为2,且是一个主对称矩阵。问你大小为n的这样的合法矩阵有多少个。

分析

作者:美食不可负064
链接:https://www.nowcoder.com/discuss/87226?type=101&order=0&pos=1&page=1
来源:牛客网

题目给出的合法矩阵是一个类似与邻接矩阵的样式。 所以应该往这方面去考虑。
每行之和等于2 , 代表每个点都连有两条边,可以有重边 不能有自环。
这说明 每个点属于且仅属于一个环。
因为输入只有一个n
应该要往dp递推的方向上去想。

现在开始找递推式。
定义dp[n]表示n个点构成的合法图的方案数。
思考每加入一个新球,如何从已知状态转移。
考虑从前面的n-1个球中选取一些球和新球组成一个环。
特殊考虑只取一个旧球的情况,
这种情况下这个旧球有n-1种方案 剩下的n-2个球组成的合法方案数已经求出。
所以这种情况下 方案数为(n-1)f(n-2)
推广到一般情况
当我们取k个旧球,剩下的球与新球组成环时,旧球的取法有C(n-1,k) ,剩下的旧球与新球组成环的方案数有(n-1-k)!种
但是考虑对称性 需要除以2。 又考虑到只取一个球的时候不需要考虑对称性 ,所以把这种情况单独摘出来考虑。
最后得到 dp[n]的递推式就是
dp[n] = (n-1) dp[n-2] + sigma(x:2->n-3)((n-1)!/(2*x!)dp[x])
但是这个东西有一个讨厌的sigma 我们可以通过相减的方法来消除这个sigma。

#include<iostream>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<cstdio>
#include<algorithm>
#include<map>
#include<set>
#define rep(i,e) for(int i=0;i<(e);i++)
#define rep1(i,e) for(int i=1;i<=(e);i++)
#define repx(i,x,e) for(int i=(x);i<=(e);i++)
#define X first
#define Y second
#define PB push_back
#define MP make_pair
#define mset(var,val) memset(var,val,sizeof(var))
#define scd(a) scanf("%d",&a)
#define scdd(a,b) scanf("%d%d",&a,&b)
#define scddd(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define pd(a) printf("%d\n",a)
#define scl(a) scanf("%lld",&a)
#define scll(a,b) scanf("%lld%lld",&a,&b)
#define sclll(a,b,c) scanf("%lld%lld%lld",&a,&b,&c)
#define IOS ios::sync_with_stdio(false);cin.tie(0)
#define lc idx<<1
#define rc idx<<1|1
#define rson mid+1,r,rc
#define lson l,mid,lc
using namespace std;
typedef long long ll;
template <class T>
void test(T a){cout<<a<<endl;}
template <class T,class T2>
void test(T a,T2 b){cout<<a<<" "<<b<<endl;}
template <class T,class T2,class T3>
void test(T a,T2 b,T3 c){cout<<a<<" "<<b<<" "<<c<<endl;}
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const ll mod = 1e9+;
int T;
void testcase(){
printf("Case %d: ",++T);
}
const int MAXN = 1e6+;
const int MAXM = ; ll dp[MAXN]; int main() {
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
ll n,m;
dp[]=;
dp[]=dp[]=;
while(cin>>n>>m){
for(ll i=;i<=n;i++){
dp[i]=((i-)*dp[i-]%m + (i-)*dp[i-]%m+m-(i-)*(i-)/%m*dp[i-]%m)%m;
}
cout<<dp[n]<<endl;
}
return ;
}

2018牛客网暑期ACM多校训练营(第一场)B Symmetric Matrix(思维+数列递推)的更多相关文章

  1. 2018牛客网暑期ACM多校训练营(第二场)I- car ( 思维)

    2018牛客网暑期ACM多校训练营(第二场)I- car 链接:https://ac.nowcoder.com/acm/contest/140/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 ...

  2. 2018牛客网暑期ACM多校训练营(第一场)D图同构,J

    链接:https://www.nowcoder.com/acm/contest/139/D来源:牛客网 同构图:假设G=(V,E)和G1=(V1,E1)是两个图,如果存在一个双射m:V→V1,使得对所 ...

  3. 2018 牛客网暑期ACM多校训练营(第一场) E Removal (DP)

    Removal 链接:https://ac.nowcoder.com/acm/contest/139/E来源:牛客网 题目描述 Bobo has a sequence of integers s1, ...

  4. 2018牛客网暑期ACM多校训练营(第十场)A Rikka with Lowbit (树状数组)

    链接:https://ac.nowcoder.com/acm/contest/148/A 来源:牛客网 Rikka with Lowbit 时间限制:C/C++ 5秒,其他语言10秒 空间限制:C/C ...

  5. 2018牛客网暑期ACM多校训练营(第十场)J Rikka with Nickname(二分,字符串)

    链接:https://ac.nowcoder.com/acm/contest/148/J?&headNav=acm 来源:牛客网 Rikka with Nickname 时间限制:C/C++ ...

  6. 2018牛客网暑期ACM多校训练营(第二场)J Farm(树状数组)

    题意 n*m的农场有若干种不同种类作物,如果作物接受了不同种类的肥料就会枯萎.现在进行t次施肥,每次对一个矩形区域施某种类的肥料.问最后枯萎的作物是多少. 分析 作者:xseventh链接:https ...

  7. 2018牛客网暑期ACM多校训练营(第三场) A - PACM Team - [四维01背包][四约束01背包]

    题目链接:https://www.nowcoder.com/acm/contest/141/A 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

  8. 2018牛客网暑期ACM多校训练营(第五场) F - take - [数学期望][树状数组]

    题目链接:https://www.nowcoder.com/acm/contest/143/F 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

  9. 2018牛客网暑期ACM多校训练营(第五场) E - room - [最小费用最大流模板题]

    题目链接:https://www.nowcoder.com/acm/contest/143/E 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

随机推荐

  1. FPGA中亚稳态相关问题及跨时钟域处理

    前言 触发器输入端口的数据在时间窗口内发生变化,会导致时序违例.触发器的输出在一段时间内徘徊在一个中间电平,既不是0也不是1.这段时间称为决断时间(resolution time).经过resolut ...

  2. 【XSY2703】置换 数学 置换 DP

    题目描述 对于置换\(p\),定义\(f(p)\)为最小的正整数\(k\),使得\(p^k\)为恒等置换. 你需要求对于所有的\(n\)元素置换\(p\),\(f^2(p)\)的平均值. \(n\le ...

  3. bzoj 1067: [SCOI2007]降雨量 (离散化+线段树)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1067 思路: 毒瘤题,写的自闭,改了一晚上,注意要理清题目的逻辑 x小于等于y,x,y之间的 ...

  4. 「SDOI2014」数数 解题报告

    「SDOI2014」数数 题目描述 我们称一个正整数 \(N\) 是幸运数,当且仅当它的十进制表示中不包含数字串集合 \(S\) 中任意一个元素作为其子串. 例如当 \(S=(\)22, 333, 0 ...

  5. Xposed+JustTrustMe+Android

    场景介绍:APP抓包 引出的知识点:ssl-pinning. ssl-pinning: apk在开发时就将服务端证书一块打包到客户端里.这样在HTTPS建立时与服务端返回的证书比对一致性,进而识别出中 ...

  6. NoSQL还是SQL?这一篇讲清楚

    https://mp.weixin.qq.com/s?__biz=MzAwMDU1MTE1OQ==&mid=2653550127&idx=1&sn=93f79e007d757a ...

  7. SpringBoot学习笔记(6) SpringBoot数据缓存Cache [Guava和Redis实现]

    https://blog.csdn.net/a67474506/article/details/52608855 Spring定义了org.springframework.cache.CacheMan ...

  8. 手把手教你用1行代码实现人脸识别 --Python Face_recognition

    环境要求: Ubuntu17.10 Python 2.7.14 环境搭建: 1. 安装 Ubuntu17.10 > 安装步骤在这里 2. 安装 Python2.7.14 (Ubuntu17.10 ...

  9. 认识Jmeter工具

    1.Apache jmeter 是一个100%的纯java桌面应用,是Apache组织开发的基于java的压力测试工具.它最初被设计用于Web应用测试但后来扩展到其他测试领域,可以用于对静态的和动态的 ...

  10. 苹果电脑利用wget总是会出现无法建立 SSL 连接的问题

    在做迁徙学习的过程中,需要下载已经训练好的Inception_v3模型,首先我们为了将下载的模型保存到指定的地方,我们需要利用 wget -P 想要保存的目录 模型的网址,例如 wget -P /Vo ...