Dijkstra和Floyd算法
#include
#include
#include
#define Infinity 999 //最大值
#define Max_Vertex_Num 20 //顶点数最多为20
#define Len sizeof(struct arcNode)
#define gLen sizeof(struct Graph)
#define HIT_Ver_Num 11 //共有11个顶点
#define HIT_Arc_Num 18 //共有18个边
//边节点
struct arcNode{
int adjvex; //该边所指向的顶点位置
struct arcNode *nextArc; //指向下一条边的指针
int value; //边的权值
};
//顶点节点
typedef struct verNode{
char *data; //顶点信息
struct arcNode *firstArc; //指向第一条依附该顶点的边
}verNode,adjList[Max_Vertex_Num];
//图的邻接表存储类型
struct Graph{
int g_arcs[Max_Vertex_Num][Max_Vertex_Num];
adjList vertices; //声明一个存储顶点的数组
int vexNum,arcNum; //vexNum 是顶点数,arcNum 是边数
};
struct Graph * creatGraph()
{
int i,j,a,b;
struct Graph *graph = (struct Graph *)malloc(gLen);
struct arcNode *arc_1 = (struct arcNode *)malloc(Len);//N楼
struct arcNode *arc_2 = (struct arcNode *)malloc(Len);
struct arcNode *arc_3 = (struct arcNode *)malloc(Len);
struct arcNode *arc_4 = (struct arcNode *)malloc(Len);//食堂
struct arcNode *arc_5 = (struct arcNode *)malloc(Len);
struct arcNode *arc_6 = (struct arcNode *)malloc(Len);
struct arcNode *arc_7 = (struct arcNode *)malloc(Len);//教师公寓
struct arcNode *arc_8 = (struct arcNode *)malloc(Len);
struct arcNode *arc_9 = (struct arcNode *)malloc(Len);//M楼
struct arcNode *arc_10 = (struct arcNode *)malloc(Len);
struct arcNode *arc_11 = (struct arcNode *)malloc(Len);
struct arcNode *arc_12 = (struct arcNode *)malloc(Len);//G楼
struct arcNode *arc_13 = (struct arcNode *)malloc(Len);
struct arcNode *arc_14 = (struct arcNode *)malloc(Len);
struct arcNode *arc_15 = (struct arcNode *)malloc(Len);
struct arcNode *arc_16 = (struct arcNode *)malloc(Len);
struct arcNode *arc_17 = (struct arcNode *)malloc(Len);
struct arcNode *arc_18 = (struct arcNode *)malloc(Len);//主楼
struct arcNode *arc_19 = (struct arcNode *)malloc(Len);
struct arcNode *arc_20 = (struct arcNode *)malloc(Len);
struct arcNode *arc_21 = (struct arcNode *)malloc(Len);//H楼
struct arcNode *arc_22 = (struct arcNode *)malloc(Len);
struct arcNode *arc_23 = (struct arcNode *)malloc(Len);
struct arcNode *arc_24 = (struct arcNode *)malloc(Len);//体育场
struct arcNode *arc_25 = (struct arcNode *)malloc(Len);
struct arcNode *arc_26 = (struct arcNode *)malloc(Len);
struct arcNode *arc_27 = (struct arcNode *)malloc(Len);//校训石
struct arcNode *arc_28 = (struct arcNode *)malloc(Len);
struct arcNode *arc_29 = (struct arcNode *)malloc(Len);
struct arcNode *arc_30 = (struct arcNode *)malloc(Len);
struct arcNode *arc_31 = (struct arcNode *)malloc(Len);//研究院
struct arcNode *arc_32 = (struct arcNode *)malloc(Len);
struct arcNode *arc_33 = (struct arcNode *)malloc(Len);
struct arcNode *arc_34 = (struct arcNode *)malloc(Len);//学校正门
struct arcNode *arc_35 = (struct arcNode *)malloc(Len);
struct arcNode *arc_36 = (struct arcNode *)malloc(Len);
char *Data[HIT_Ver_Num] = {"N楼","食堂","教师公寓","M楼","G楼","主楼","H楼","体育场","校训石","研究院","学校正门"};
if(graph==NULL||arc_1==NULL||arc_2==NULL||arc_3==NULL||arc_4==NULL||arc_5==NULL||arc_6==NULL||arc_7==NULL||arc_8==NULL||arc_9==NULL
||arc_10==NULL||arc_11==NULL||arc_12==NULL||arc_13==NULL||arc_14==NULL||arc_15==NULL||arc_16==NULL||arc_17==NULL||arc_18==NULL
||arc_19==NULL||arc_20==NULL||arc_21==NULL||arc_22==NULL||arc_23==NULL||arc_24==NULL||arc_25==NULL||arc_26==NULL||arc_27==NULL
||arc_28==NULL||arc_29==NULL||arc_30==NULL||arc_31==NULL||arc_32==NULL||arc_33==NULL||arc_34==NULL||arc_35==NULL||arc_36==NULL)
{
printf("内存不足\n退出程序");
exit(0);
}
graph->vexNum = HIT_Ver_Num;
graph->arcNum = HIT_Arc_Num;
for(j = 0; j < graph->vexNum; j++)
{
graph->vertices[j].data = Data[j];
graph->vertices[j].firstArc = NULL;
}
arc_1->value = 130;
arc_1->adjvex = 3;
arc_1->nextArc = graph->vertices[0].firstArc;
graph->vertices[0].firstArc = arc_1;
arc_2->value = 140;
arc_2->adjvex = 4;
arc_2->nextArc = graph->vertices[0].firstArc;
graph->vertices[0].firstArc = arc_2;
arc_3->value = 55;
arc_3->adjvex = 1;
arc_3->nextArc = graph->vertices[0].firstArc;
graph->vertices[0].firstArc = arc_3;//End N楼
arc_4->value = 55;
arc_4->adjvex = 0;
arc_4->nextArc = graph->vertices[1].firstArc;
graph->vertices[1].firstArc = arc_4;
arc_5->value = 150;
arc_5->adjvex = 4;
arc_5->nextArc = graph->vertices[1].firstArc;
graph->vertices[1].firstArc = arc_5;
arc_6->value = 110;
arc_6->adjvex = 2;
arc_6->nextArc = graph->vertices[1].firstArc;
graph->vertices[1].firstArc = arc_6;//End 食堂
arc_7->value = 110;
arc_7->adjvex = 1;
arc_7->nextArc = graph->vertices[2].firstArc;
graph->vertices[2].firstArc = arc_7;
arc_8->value = 105;
arc_8->adjvex = 6;
arc_8->nextArc = graph->vertices[2].firstArc;
graph->vertices[2].firstArc = arc_8;//End 教师公寓
arc_9->value = 130;
arc_9->adjvex = 0;
arc_9->nextArc = graph->vertices[3].firstArc;
graph->vertices[3].firstArc = arc_9;
arc_10->value = 40;
arc_10->adjvex = 4;
arc_10->nextArc = graph->vertices[3].firstArc;
graph->vertices[3].firstArc = arc_10;
arc_11->value = 70;
arc_11->adjvex = 7;
arc_11->nextArc = graph->vertices[3].firstArc;
graph->vertices[3].firstArc = arc_11;//End M楼
arc_12->value = 40;
arc_12->adjvex = 3;
arc_12->nextArc = graph->vertices[4].firstArc;
graph->vertices[4].firstArc = arc_12;
arc_13->value = 140;
arc_13->adjvex = 0;
arc_13->nextArc = graph->vertices[4].firstArc;
graph->vertices[4].firstArc = arc_13;
arc_14->value = 150;
arc_14->adjvex = 1;
arc_14->nextArc = graph->vertices[4].firstArc;
graph->vertices[4].firstArc = arc_14;
arc_15->value = 40;
arc_15->adjvex = 5;
arc_15->nextArc = graph->vertices[4].firstArc;
graph->vertices[4].firstArc = arc_15;
arc_16->value = 100;
arc_16->adjvex = 8;
arc_16->nextArc = graph->vertices[4].firstArc;
graph->vertices[4].firstArc = arc_16;
arc_17->value = 65;
arc_17->adjvex = 7;
arc_17->nextArc = graph->vertices[4].firstArc;
graph->vertices[4].firstArc = arc_17;//End G楼
arc_18->value = 40;
arc_18->adjvex = 4;
arc_18->nextArc = graph->vertices[5].firstArc;
graph->vertices[5].firstArc = arc_18;
arc_19->value = 115;
arc_19->adjvex = 6;
arc_19->nextArc = graph->vertices[5].firstArc;
graph->vertices[5].firstArc = arc_19;
arc_20->value = 50;
arc_20->adjvex = 8;
arc_20->nextArc = graph->vertices[5].firstArc;
graph->vertices[5].firstArc = arc_20;//End 主楼
arc_21->value = 105;
arc_21->adjvex = 2;
arc_21->nextArc = graph->vertices[6].firstArc;
graph->vertices[6].firstArc = arc_21;
arc_22->value = 115;
arc_22->adjvex = 5;
arc_22->nextArc = graph->vertices[6].firstArc;
graph->vertices[6].firstArc = arc_22;
arc_23->value = 60;
arc_23->adjvex = 9;
arc_23->nextArc = graph->vertices[6].firstArc;
graph->vertices[6].firstArc = arc_23;//End H楼
arc_24->value = 70;
arc_24->adjvex = 3;
arc_24->nextArc = graph->vertices[7].firstArc;
graph->vertices[7].firstArc = arc_24;
arc_25->value = 65;
arc_25->adjvex = 4;
arc_25->nextArc = graph->vertices[7].firstArc;
graph->vertices[7].firstArc = arc_25;
arc_26->value = 100;
arc_26->adjvex = 10;
arc_26->nextArc = graph->vertices[7].firstArc;
graph->vertices[7].firstArc = arc_26;//End 体育场
arc_27->value = 100;
arc_27->adjvex = 4;
arc_27->nextArc = graph->vertices[8].firstArc;
graph->vertices[8].firstArc = arc_27;
arc_28->value = 50;
arc_28->adjvex = 5;
arc_28->nextArc = graph->vertices[8].firstArc;
graph->vertices[8].firstArc = arc_28;
arc_29->value = 50;
arc_29->adjvex = 9;
arc_29->nextArc = graph->vertices[8].firstArc;
graph->vertices[8].firstArc = arc_29;
arc_30->value = 40;
arc_30->adjvex = 10;
arc_30->nextArc = graph->vertices[8].firstArc;
graph->vertices[8].firstArc = arc_30;//End 校训石
arc_31->value = 50;
arc_31->adjvex = 8;
arc_31->nextArc = graph->vertices[9].firstArc;
graph->vertices[9].firstArc = arc_31;
arc_32->value = 60;
arc_32->adjvex = 6;
arc_32->nextArc = graph->vertices[9].firstArc;
graph->vertices[9].firstArc = arc_32;
arc_33->value = 70;
arc_33->adjvex = 10;
arc_33->nextArc = graph->vertices[9].firstArc;
graph->vertices[9].firstArc = arc_33;//End 研究院
arc_34->value = 100;
arc_34->adjvex = 7;
arc_34->nextArc = graph->vertices[10].firstArc;
graph->vertices[10].firstArc = arc_34;
arc_35->value = 40;
arc_35->adjvex = 8;
arc_35->nextArc = graph->vertices[10].firstArc;
graph->vertices[10].firstArc = arc_35;
arc_36->value = 70;
arc_36->adjvex = 9;
arc_36->nextArc = graph->vertices[10].firstArc;
graph->vertices[10].firstArc = arc_36;//End 学校正门
for(a = 0; a < graph->vexNum; a++) //置为无穷大(999)
{
for(b = 0; b < graph->vexNum; b++)
{
graph->g_arcs[a][b] = Infinity;
}
}
for(i = 0; i < graph->vexNum; i++) //将相应位置置权值
{
while(graph->vertices[i].firstArc != NULL)
{
graph->g_arcs[i][graph->vertices[i].firstArc->adjvex] = graph->vertices[i].firstArc->value;
graph->vertices[i].firstArc = graph->vertices[i].firstArc->nextArc;
}
}
return graph;
}
//单源最短路径(即 Dijkstra算法)
void shortestPath_Dij(struct Graph graph,int v0)
{
int i = 0,v,w,min,pre;
int arrayD[HIT_Ver_Num],arrayP[HIT_Ver_Num];//辅助数组
int arrayFinal[HIT_Ver_Num];//辅助数组
//初始化
for(v = 0; v < graph.vexNum; v++)
{
arrayFinal[v] = 0;
arrayD[v] =graph.g_arcs[v0][v];
if(arrayD[v] < Infinity)
{
arrayP[v] = v0;
}
else
{
arrayP[v] = -1;
}
}
arrayFinal[v0] = 1;
arrayP[v0] = -1;
for(i = 1; i < graph.vexNum; i++)
{
min = Infinity;
//加入具有最小代价的邻居节点
for(w = 0; w < graph.vexNum; w++)
{
if(!arrayFinal[w] && (arrayD[w] < min))
{
v = w;
min = arrayD[w];
}
}
arrayFinal[v] = 1;
//计算加入新的节点后,更新路径使得其产生代价最短
for(w = 0; w < graph.vexNum; w++)
{
if(!arrayFinal[w] && (min + graph.g_arcs[v][w] < arrayD[w]))
{
arrayD[w] = min + graph.g_arcs[v][w];
arrayP[w] = v;
}
}
}
for(i = 0; i < graph.vexNum; i++)
{
if(v0 == i)
printf("目的地与起点重合,权值为零\n\n");
else
{
printf("权值为:%d\n",arrayD[i]);
printf("%s",graph.vertices[i].data);
pre = arrayP[i];
while(pre != -1)
{
printf(" <-- %s",graph.vertices[pre].data);
pre = arrayP[pre];
}
printf("\n\n");
}
}
}
void shortestPath_Floyd(struct Graph graph,int v1,int v2)
{
int i,j,k,temp;
int arrayPath[HIT_Ver_Num][HIT_Ver_Num],arrayDis[HIT_Ver_Num][HIT_Ver_Num];
//初始化
for(i = 0; i < graph.vexNum; i++)
{
for(j = 0; j < graph.vexNum; j++)
{
if(graph.g_arcs[i][j] < Infinity)
arrayPath[i][j] = j;
else
arrayPath[i][j] = -1;
arrayDis[i][j] = graph.g_arcs[i][j];
}
}
for(k = 0; k < graph.vexNum; k++)//对所有顶点进行试探
{
for(i = 0; i < graph.vexNum; i++)
{
for(j = 0; j < graph.vexNum; j++)
{
if(arrayDis[i][j] > arrayDis[i][k] + arrayDis[k][j])
{
arrayDis[i][j] = arrayDis[i][k] + arrayDis[k][j];//取较小者
arrayPath[i][j] = arrayPath[i][k];//改Vi的后继
}
}
}
}
printf("从 %s 到 %s 的最短距离为:%d\n",graph.vertices[v1].data,graph.vertices[v2].data,arrayDis[v1][v2]);
printf("最短路径为:\t");
temp = arrayPath[v1][v2];
printf("%s --> ",graph.vertices[v1].data);//输出V1
while(temp != v2)//temp不等于路径终点v2时
{
printf("%s --> ",graph.vertices[temp].data);//输出
temp = arrayPath[temp][v2];//求路径上下一顶点
}
printf("%s.",graph.vertices[v2].data);//输出V2
printf("\n");
}
int main()
{
int b,c,count = 0;
int num,i,a,i_2,i_3;
char *nodeName_1 = (char*)malloc(10);//必须得用malloc函数申请空间
char *nodeName_2 = (char*)malloc(10);//必须得用malloc函数申请空间
char *nodeName_3 = (char*)malloc(10);//必须得用malloc函数申请空间
struct Graph *graph;
graph = creatGraph(); //生成图
for(b=0;bvexNum;b++)
{
for(c = 0;cvexNum;c ++)
{
printf("%d\t",graph->g_arcs[b][c]);
}
printf("\n");
}
printf("请按提示进行操作:\n");
printf("1、输入任意一个节点的名称,显示它到各个节点的最短路径及最短距离。\n");
printf("2、输入任意两个节点的名称,显示两点间最短路径和最短距离。\n");
printf("请输入 1 或 2 进行查询。\n");
scanf("%d",&num);
switch(num)
{
case 1:
for(a = 0;avexNum;a++)
{
printf("%s ",graph->vertices[a].data);
}
printf("\n");
printf("请输入节点名称:\n");
scanf("%s",nodeName_1);
for(i = 0; i < graph->vexNum; i++)
{
if(strcmp(nodeName_1,graph->vertices[i].data) != 0)
{
count++;
}
if(0 == strcmp(nodeName_1,graph->vertices[i].data))
{
shortestPath_Dij(*graph,i);
}
}
if(graph->vexNum == count)
{
printf("输入名称有误!退出程序!");
exit(0);
}
break;
case 2:
for(a = 0;avexNum;a++)
{
printf("%s ",graph->vertices[a].data);
}
printf("\n");
printf("请分别输入第一个节点名称:\n");
scanf("%s",nodeName_2);
printf("请分别输入第二个节点名称:\n");
scanf("%s",nodeName_3);
for(i = 0; i < graph->vexNum; i++)
{
if(0 == strcmp(nodeName_2,graph->vertices[i].data))
{
i_2 = i;
}
if(0 == strcmp(nodeName_3,graph->vertices[i].data))
{
i_3 = i;
}
}
if(i_2 == i_3)
{
printf("输入的起点和终点重合,退出程序!");
exit(0);
}
shortestPath_Floyd(*graph,i_2,i_3);
break;
default:
printf("输入有误!退出程序!");
exit(0);
break;
}
return 0;
}
实验结果:
Dijkstra和Floyd算法的更多相关文章
- 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...
- Dijkstra与Floyd算法
1. Dijkstra算法 1.1 定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点 ...
- Dijkstra and Floyd算法
Dijkstra算法 算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集 ...
- 图的最短路径——dijkstra算法和Floyd算法
dijkstra算法 求某一顶点到其它各个顶点的最短路径:已知某一顶点v0,求它顶点到其它顶点的最短路径,该算法按照最短路径递增的顺序产生一点到其余各顶点的所有最短路径. 对于图G={V,{E}};将 ...
- (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法模板的整理与介绍
这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: / ...
- 最短路径—Dijkstra算法和Floyd算法
原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...
- 最短路径---Dijkstra/Floyd算法
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...
- 最短路径—大话Dijkstra算法和Floyd算法
Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , ...
- Dijkstra 算法、Kruskal 算法、Prim算法、floyd算法
1.dijkstra算法 算最短路径的,算法解决的是有向图中单个源点到其他顶点的最短路径问题. 初始化n*n的数组. 2.kruskal算法 算最小生成树的,按权值加入 3.Prim算法 类似dijk ...
随机推荐
- 基数排序模板(基数排序,C++模板)
算法的理论学习可右转Creeper_LKF大佬的洛谷日报 一个优化算法理论时间复杂度的实例点这里 另一个实例点这里 时间复杂度\(O(n)\),算常数的话要乘位长. 蒟蒻参考了Creeper_LKF大 ...
- CSS之FLex布局介绍
网页布局(layout)是CSS的一个重点应用. img 布局的传统解决方案,基于盒状模型,依赖 display属性 + position属性 + float属性.它对于那些特殊布局非常不方便,比如, ...
- hdu 2859 Phalanx (最大对称子矩阵)
Problem Description Today is army day, but the servicemen are busy with the phalanx for the celebrat ...
- nginx常用配置
nginx.conf配置文件详解 其主要分为几个模块 全局快 从开始到events块之间的一部分内容,其作用域为全局作用域 events块 主要负责Nginx服务器与用户的网络连接 常用设置: 是否开 ...
- A1119. Pre- and Post-order Traversals
Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can ...
- 【模板】2-SAT
题目大意:给定 N 个点的 M 条约束,约束形式为:\(a_i \lor a_j = 1\). 题解:拆点什么的就不说了,在求出一组解的时候,考虑到 Tarjan 找环的过程中,scc 染色是按照拓扑 ...
- Runtime.getRuntime().exec(...),当参数中有空格时!
原以为不会有什么问题,但在测试时发现,问题大了. 如果想调用f:\mp3\i love you.mp3时, 我原以为正确的写法是: //在文件名前后加个双引号来解决文件名中有空格的情况 String ...
- Proxy代理模式
https://www.cnblogs.com/vincentzh/p/5988145.html https://www.cnblogs.com/wrbxdj/p/5267370.html(不错)
- 2018.11.26 QLU新生赛部分题解
问题 L: 寄蒜几盒? 题目描述 现在有一个圆圈,圆圈上有若干个点,请判断能否在若干个点中选择三个点两两相连组成一个等边三角形? 这若干个点在圆圈上按顺时针顺序分布. 如果可以的话输出"Ye ...
- java eclipse 安卓环境配置
adt下载地址 http://www.runoob.com/w3cnote/android-tutorial-eclipse-adt-sdk-app.html 我的云 安卓学习 java htt ...