基本形式

线性回归非常直观简洁,是一种常用的回归模型,大叔总结如下:

设有样本\(X\)形如:

\[\begin{pmatrix}
x_1^{(1)} & x_2^{(1)} & \cdots &x_n^{(1)}\\
x_1^{(2)} & x_2^{(2)} & \cdots & x_n^{(2)}\\
\vdots & \vdots & \vdots & \vdots\\
x_1^{(m)} & x_2^{(m)} & \cdots & x_n^{(m)}\\
\end{pmatrix} \]

对应的标记\(\vec{y}\)形如:

\[\begin{pmatrix}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(m)} \\
\end{pmatrix}\]

其中,矩阵\(X\)的每一行表示一个样本,一共有m个样本;每列表示样本的一个属性,共有n个属性。设假设函数

\[h(x_1,x_2 \dots x_n)= \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n \tag{1}
\]

设\(x_0=1\),则(1)式重新写为

\[h(x_1,x_2 \dots x_n)= \theta_0x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n \tag{2}
\]

定义代价函数(均方误差)

\[j(\theta_0,\theta_1\dots \theta_n)=\frac{1}{2m}\sum_{k=1}^m (h(x_1^{(k)},x_2^{(k)} \dots x_n^{(k)}) - y^{(k)})^2
\]

即:

\[j(\theta_0,\theta_1\dots \theta_n)=\frac{1}{2m}\sum_{k=1}^m (\theta_0x_0^{(k)} + \theta_1 x_1^{(k)} + \theta_2 x_2^{(k)} + \dots + \theta_n x_n^{(k)} - y^{(k)})^2 \tag{3}
\]

这里的分母乘以2并没有意义,只是为了求导后正好约掉。另外,其实求绝对值之和更直观,但是计算不方便,求平方后再求和效果是一样的,而且计算非常容易。我们的目标是根据样本数据求出使得代价函数取值最小的参数\(\vec\theta\),均方误差越小,说明以\(\vec\theta\)为参数的线性函数拟合样本的能力越强

求解参数\(\vec\theta\)

梯度下降法

关于梯度下降法可参考 大叔学ML第一:梯度下降

由于代价函数是一个凸函数,可以用梯度下降法找到最小值。由于用到梯度,首先对\(\theta_0\)、\(\theta_1\)、\(\theta_2\)直到\(\theta_n\)求偏导:

  • \(\frac{\partial}{\partial\theta_0}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)} - y^{(k)})x_0^{(k)}\)
  • \(\frac{\partial}{\partial\theta_1}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_1^{(k)}\)
  • \(\dots\)
  • \(\frac{\partial}{\partial\theta_n}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_n^{(k)}\)

可归纳为:\(\frac{\partial}{\partial\theta_n}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_n^{(k)}\tag{4}\)

万事俱备,现在可以编程了。创建一组测试数据,每组数据包括3个属性,我们来编码拟合出一个线性函数:

import numpy as np

def gradient(X, Y, m, theta):
''' 求theta位置的梯度. Args:
X: 样本
Y: 样本标记
m: 样本数
theta: 欲求梯度的位置 Returns:
gi: theta处函数的梯度值
'''
theta_size = np.size(theta)
g = np.zeros(theta_size) for i in range(theta_size):
gi = 0 #第i个theta分量对应的偏导
for j in range(m):
gi += ((np.dot(X[j], theta) - Y[j]) * X[j, i])
gi = gi / m
g[i] = gi return g def gradient_descent(X, Y, step = 0.02, threshold = 0.01):
''' 梯度下降法求使代价函数最小的 theta Args:
X: 样本
Y: 样本标记
step:步长
threshold:梯度模长阈值,低于此值时停止迭代
Returns:
theta: 使代价函数取最小值的theta
'''
theta = np.random.rand(4)
grad = gradient(X, Y, np.size(X, 0), theta)
norm = np.linalg.norm(grad) while(norm > threshold):
theta -= step * grad
grad = gradient(X, Y, np.size(X, 0), theta)
norm = np.linalg.norm(grad)
return theta ''' 以下是测试数据 ''' # 测试用线性函数
def linear_function(x1, x2, x3):
result = 1 + 2 * x1 + 3 * x2 + 4 * x3
result = result + np.random.rand() # 噪音
return result # 计算函数值
def calculate(X):
rowsnumber = np.size(X, axis = 0)
Y = [linear_function (X[i, 0], X[i, 1], X[i, 2]) for i in range(0, rowsnumber)]
return Y if __name__ == "__main__":
row_count = 500
X = np.random.randint(0, 10, (row_count, 3)) # 随机产生row_count个样本
Y = calculate(X) # 计算标记 X0 = np.ones((row_count, 1))
X = np.hstack((X0, X)) # 补充一列1 theta = gradient_descent(X, Y)
print('theta is ', theta)

运行结果:theta is [1.41206515 2.00558441 3.0013728 4.00684577]

上面的迭代方法被称为批量梯度下降法,参考式(4),计算梯度时用到了所有的样本。梯度下降法还有个简化的版本,叫做随机梯度下降法,每次计算梯度时只随机使用一个样本,而不是所有样本,这样可以加快计算速度。将式(4)修改为:

\[\frac{\partial}{\partial\theta_n}j(\theta_0,\theta_1\dots \theta_n) = (\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_n^{(k)} \tag{5}
\]

其中:\(1 \leq k \leq m\)

将上面Python代码中的方法gradient替换一下:

def gradient_sgd(X, Y, m, theta):
''' 求theta位置的梯度. Args:
X: 样本
Y: 样本标记
m: 样本数
theta: 欲求梯度的位置 Returns:
gi: theta处函数的梯度值
'''
theta_size = np.size(theta)
g = np.zeros(theta_size) for i in range(theta_size):
random_Index = np.random.randint(1, m + 1)
gi = ((np.dot(X[random_Index], theta) - Y[random_Index]) * X[random_Index, i])
g[i] = gi return g

运行结果:

theta is [1.43718942 2.00043557 3.00620849 4.00674728]

感觉像是飞起来。随机梯度下降法肯定没有批量梯度下降法准确,所有还有第三种下降法,叫做小批量梯度下降法,介于批量梯度下降法和随机梯度下降法之间,每次计算梯度使用随机的一小批样本,此处不再code说明。

正规方程导法

因为代价函数是个凸函数,那么我们可以对代价函数求导,让其导数等于0的点即为最小值点。

为方便计算,我们在前面增加了一个值恒等于1的\(x_0\),这样就把线性函数的偏置项去掉了,参考式(2),重新定义矩阵\(X\)为:

\[\begin{pmatrix}
x_0^{(1)} & x_1^{(1)} & x_2^{(1)} & \cdots &x_n^{(1)}\\
x_0^{(2)} &x_1^{(2)} & x_2^{(2)} & \cdots & x_n^{(2)}\\
\vdots & \vdots & \vdots & \vdots & \vdots\\
x_0^{(m)} & x_1^{(m)} & x_2^{(m)} & \cdots & x_n^{(m)}\\
\end{pmatrix}\]

代价函数式(3)等价于:

\[J(\vec\theta)=\frac{1}{2m}||X\vec\theta - \vec{y}||^2 \tag{6}
\]

化简式(6):

\[\begin{align}
J(\vec\theta)&=\frac{1}{2m}||X\vec\theta - \vec{y}||^2 \\
&=\frac{1}{2m}(X\vec\theta - \vec{y})^T(X\vec\theta - \vec{y}) \\
&=\frac{1}{2m}(\vec\theta^TX^T - \vec{y}^T)(X\vec\theta - \vec{y}) \\
&=\frac{1}{2m}(\vec\theta^TX^TX\vec\theta - \vec\theta^TX^T\vec{y}- \vec{y}^TX\vec\theta + \vec{y}^T\vec{y})\\
&=\frac{1}{2m}(\vec\theta^TX^TX\vec\theta - 2\vec{y}^TX\vec\theta + \vec{y}^T\vec{y})\\
\end{align}\]

对\(\vec\theta\)求导:

\[\frac{d}{d\vec\theta}J(\vec\theta)=\frac{1}{m}(X^TX\vec\theta-X^T\vec{y})
\]

令其等于0,得:$$\vec\theta=(XTX){-1}X^T\vec{y}\tag{7}$$

将上面的Python代码改为:

# 测试用线性函数
def linear_function(x1, x2, x3):
result = 1 + 2 * x1 + 3 * x2 + 4 * x3
result = result + np.random.rand() # 噪音
return result # 计算函数值
def calculate(X):
rowsnumber = np.size(X, axis = 0)
Y = [linear_function (X[i, 0], X[i, 1], X[i, 2]) for i in range(0, rowsnumber)]
return Y if __name__ == "__main__":
row_count = 500
X = np.random.randint(0, 10, (row_count, 3)) # 随机产生row_count个样本
Y = calculate(X) # 计算标记 X0 = np.ones((row_count, 1))
X = np.hstack((X0, X)) # 补充一列1 theta = np.dot(np.dot(np.linalg.pinv(np.dot(X.T, X)), X.T), np.array(Y).T)
print('theta is ', theta)

运行结果:theta is [1.49522638 1.99801209 2.99704438 4.00427252]

和梯度下降法比较,光速的感觉,那为什么还要用梯度下降法呢?这是因为求矩阵的逆算法复杂度较高,达爷的建议是:如果样本的属性超过一万个,考虑使用梯度下降法。

调用函数库

其实我们也可以直接调用类库的,有很多类库可以做回归算法,比如:

import numpy as np
from sklearn import linear_model # 测试用线性函数
def linear_function(x1, x2, x3):
result = 1 + 2 * x1 + 3 * x2 + 4 * x3
result = result + np.random.rand() # 噪音
return result # 计算函数值
def calculate(X):
rowsnumber = np.size(X, axis = 0)
Y = [linear_function (X[i, 0], X[i, 1], X[i, 2]) for i in range(0, rowsnumber)]
return Y if __name__ == "__main__":
row_count = 500
X = np.random.randint(0, 10, (row_count, 3)) # 随机产生row_count个样本
Y = calculate(X) # 计算标记 regr = linear_model.LinearRegression()
regr.fit(X, np.array(Y).T) a, b = regr.coef_, regr.intercept_
print(a)
print(b)

运行结果:

[2.00384674 2.99234723 3.99603084]

1.5344826581936104

和我们自己算的差不多吧。还有很多其他的类库可以调用,大叔没有一一去找。可能通常只要调用类库就足够了,不需要我们自己写,不过还是知道原理比较好,遇到问题才好对症下药。

我是这样理解的:我们能够调用到的常见的(广义)线性回归库,其实内部都是用直接求导法实现的(没有看过源码,猜测是直接求导,如果是梯度下降,不太可能自动算出步长),如果样本的属性比较少,比如少于一万个,调用类库就好,类库肯定比我们大部分人自己写的强,但是当样本属性非常多时,用直接求导法求解速度太慢,这时才需要我们自己写梯度下降代码。

大叔学ML第二:线性回归的更多相关文章

  1. 大叔学ML第四:线性回归正则化

    目录 基本形式 梯度下降法中应用正则化项 正规方程中应用正则化项 小试牛刀 调用类库 扩展 正则:正则是一个汉语词汇,拼音为zhèng zé,基本意思是正其礼仪法则:正规:常规:正宗等.出自<楚 ...

  2. 大叔学ML第五:逻辑回归

    目录 基本形式 代价函数 用梯度下降法求\(\vec\theta\) 扩展 基本形式 逻辑回归是最常用的分类模型,在线性回归基础之上扩展而来,是一种广义线性回归.下面举例说明什么是逻辑回归:假设我们有 ...

  3. 大叔学ML第三:多项式回归

    目录 基本形式 小试牛刀 再试牛刀 调用类库 基本形式 上文中,大叔说道了线性回归,线性回归是个非常直观又简单的模型,但是很多时候,数据的分布并不是线性的,如: 如果我们想用高次多项式拟合上面的数据应 ...

  4. 大叔学ML第一:梯度下降

    目录 原理 实践一:求\(y = x^2 - 4x + 1\)的最小值 实践二:求\(z = x^2 + y^2 + 5\)的最小值 问答时间 原理 梯度下降是一个很常见的通过迭代求解函数极值的方法, ...

  5. [老老实实学WCF] 第二篇 配置WCF

    老老实实学WCF 第二篇 配置WCF 在上一篇中,我们在一个控制台应用程序中编写了一个简单的WCF服务并承载了它.先回顾一下服务端的代码: using System; using System.Col ...

  6. 跟我学SpringCloud | 第二篇:注册中心Eureka

    Eureka是Netflix开源的一款提供服务注册和发现的产品,它提供了完整的Service Registry和Service Discovery实现.也是springcloud体系中最重要最核心的组 ...

  7. ml的线性回归应用(python语言)

    线性回归的模型是:y=theta0*x+theta1   其中theta0,theta1是我们希望得到的系数和截距. 下面是代码实例: 1. 用自定义数据来看看格式: # -*- coding:utf ...

  8. 简单学C——第二天

                 控制结构(-) 相信大家对流程图肯定很熟悉.下面我将介绍的正是关于此方面的,c语言中,控制结构大体分为选择结构和循环结构. 一.选择结构:     先贴出一般用于选择结构的语 ...

  9. (转)[老老实实学WCF] 第二篇 配置WCF

    第二篇 配置WCF 在上一篇中,我们在一个控制台应用程序中编写了一个简单的WCF服务并承载了它.先回顾一下服务端的代码: using System; using System.Collections. ...

随机推荐

  1. django filter or 多条件查询

    功能:django中实现多条件查询 或关系: from django.db.models import Q return qs.filter(Q(notice_to_group__contains=' ...

  2. android一个app打开另一个app的指定页面

    一个app打开另一个app的指定页面方法 有以下几种 1.通过包名.类名 2.通过intent的 action 3.通过Url 方案1. ComponentName componentName = n ...

  3. 将Windows系统移到另一个硬盘

    原先的128GB SSD,给Windows用是够了,最近虚拟机用得多,靠以前的SSD外挂着用,实在有点不爽,就入手一个256GB的,重装系统是个令人头疼的事情,当然不能干.想起来以前另一个机器操作的时 ...

  4. DataTable行分组,并sum求和

    两种方式: 第一种,Linq void Main() { var dt=new DataTable(); dt.Columns.Add("medicID"); dt.Columns ...

  5. windows -休眠

    查询服务器执行的睡眠状态 powercfg -a 开始休眠方法:手工键入如下命令: powercfg -hibernate on 命令执行之后立即就可以生效,无需要重新启动系统,再次执行“powerc ...

  6. layui与echarts

    https://pan.baidu.com/s/1qM5ybqD-wAQNnWubdegBiA 在此感谢Layui给我这种不懂前端的人很大的帮助

  7. Pytorch之训练器设置

    Pytorch之训练器设置 引言 深度学习训练的时候有很多技巧, 但是实际用起来效果如何, 还是得亲自尝试. 这里记录了一些个人尝试不同技巧的代码. tensorboardX 说起tensorflow ...

  8. 服务管理之mysql基础

    目录 mysql基础 1. 关系型数据库介绍 1.1 数据结构模型 1.2 RDBMS专业名词 2. mysql安装与配置 2.1 mysql安装 2.2 mysql配置 3. mysql的程序组成 ...

  9. 联想功能 Jquery autocomplete.js输入框联想补全功能

    转载地址:https://www.cnblogs.com/jinzhiming/p/6768402.html

  10. SHELL脚本学习-定时检查Oracle alert日志并发送mail

    对于DBA来说,检查alert日志是日常工作.告警日志日积月累往往很大,而且每次在服务器上查看或者下载到目标主机查看都十分不方便. 为了方便,以下做出两种情况:(其他情况类推) 第一场景:每天早上上班 ...