GCD & LCM Inverse
Time Limit: 2000MS
Memory Limit: 65536K
Total Submissions: 9756Accepted: 1819

Description





Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b. But what about the inverse?

That is: given GCD and LCM, finding a and b.

Input





The input contains multiple test cases, each of which contains two positive integers, the GCD and the LCM. You can assume that these two numbers are both less than 2^63.

Output





For each test case, output a and b in ascending order. If there are multiple solutions, output the pair with smallest a + b.

Sample Input





3 60

Sample Output





12 15

Source

POJ Achilles

题目大意:给你两个数a和b的最大公约数和最小公倍数。求a和b

(当中在满足条件的情况下。使a+b尽量小)

思路:最大公约数和最小公倍数的规模为2^63,暴力果断不行。

已知a*b = L(最小公倍数)*G(最大公约数);

设p = L/a,q = L/b,s = L/G;

即p、q为a和b除去最大公约数的部分,且两者互质;

GCD(p,q) = 1,LCM(p。q) = p * q = L*L/(a*b) = L*L/(L*G) = L/G = s。

LCM(p,q) = s;

由上可得我们可由s求出a和b。此题就是让我们把s分解成两个互质数相乘的形式。

Pollar Rho整数分解Miller
Rabin素数測试
结合起来,将s的全部质因子分解出来。

由于GCD(p,q) = 1,全部同样的质数不能同一时候分到p和q中,应将同样的质数分开放。

这里我们把全部同样的质数当做一个总体。

将这些数枚举相乘,找到最接近s的平方根且不

大于s的平方根的组合即为p。则q = s/p

终于a = L/p。b = L/q

比如 G L 为 2 120

s = 60 = 2 * 2 * 3 * 5 = 4 * 3 * 5。枚举进行组合。找到最接近根号60并不超过根号60的

值为5。即p = 5,则q = 60/5 = 12。终于a = 24。b = 10。

參考博文:http://blog.sina.com.cn/s/blog_69c3f0410100uac0.html

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define MAX_VAL (pow(2.0,60))
//miller_rabbin素性測试
//__int64 mod_mul(__int64 x,__int64 y,__int64 mo)
//{
// __int64 t;
// x %= mo;
// for(t = 0; y; x = (x<<1)%mo,y>>=1)
// if(y & 1)
// t = (t+x) %mo;
//
// return t;
//} __int64 mod_mul(__int64 x,__int64 y,__int64 mo)
{
__int64 t,T,a,b,c,d,e,f,g,h,v,ans;
T = (__int64)(sqrt(double(mo)+0.5)); t = T*T - mo;
a = x / T;
b = x % T;
c = y / T;
d = y % T;
e = a*c / T;
f = a*c % T;
v = ((a*d+b*c)%mo + e*t) % mo;
g = v / T;
h = v % T;
ans = (((f+g)*t%mo + b*d)% mo + h*T)%mo;
while(ans < 0)
ans += mo;
return ans;
} __int64 mod_exp(__int64 num,__int64 t,__int64 mo)
{
__int64 ret = 1, temp = num % mo;
for(; t; t >>=1,temp=mod_mul(temp,temp,mo))
if(t & 1)
ret = mod_mul(ret,temp,mo); return ret;
} bool miller_rabbin(__int64 n)
{
if(n == 2)
return true;
if(n < 2 || !(n&1))
return false;
int t = 0;
__int64 a,x,y,u = n-1;
while((u & 1) == 0)
{
t++;
u >>= 1;
}
for(int i = 0; i < 50; i++)
{
a = rand() % (n-1)+1;
x = mod_exp(a,u,n);
for(int j = 0; j < t; j++)
{
y = mod_mul(x,x,n);
if(y == 1 && x != 1 && x != n-1)
return false;
x = y;
}
if(x != 1)
return false;
}
return true;
}
//PollarRho大整数因子分解
__int64 minFactor;
__int64 gcd(__int64 a,__int64 b)
{
if(b == 0)
return a;
return gcd(b, a % b);
} __int64 PollarRho(__int64 n, int c)
{
int i = 1;
srand(time(NULL));
__int64 x = rand() % n;
__int64 y = x;
int k = 2;
while(true)
{
i++;
x = (mod_exp(x,2,n) + c) % n;
__int64 d = gcd(y-x,n);
if(1 < d && d < n)
return d;
if(y == x)
return n;
if(i == k)
{
y = x;
k *= 2;
}
}
}
__int64 ans[1100],cnt;
void getSmallest(__int64 n, int c)
{
if(n == 1)
return;
if(miller_rabbin(n))
{
ans[cnt++] = n;
return;
}
__int64 val = n;
while(val == n)
val = PollarRho(n,c--);
getSmallest(val,c);
getSmallest(n/val,c);
}
__int64 a,b,sq;
void choose(__int64 s,__int64 val)
{
if(s >= cnt)
{
if(val > a && val <= sq)
a = val;
return;
}
choose(s+1,val);
choose(s+1,val*ans[s]);
} int main()
{
int T;
__int64 G,L;
while(~scanf("%I64d%I64d",&G,&L))
{
if(L == G)
{
printf("%I64d %I64d\n",G,L);
continue;
}
L /= G;
cnt = 0;
getSmallest(L,200);
sort(ans, ans+cnt);
int j = 0;
for(int i = 1; i < cnt; i++)
{
while(ans[i-1] == ans[i] && i < cnt)
ans[j] *= ans[i++];
if ( i < cnt )
ans[++j] = ans[i];
} cnt = j+1;
a = 1;
sq = (__int64)sqrt(L+0.0);
choose(0,1);
printf("%I64d %I64d\n",a*G,L/a*G);
}
return 0;
}

POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】的更多相关文章

  1. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  2. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  3. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  5. POJ2429 - GCD & LCM Inverse(Miller–Rabin+Pollard's rho)

    题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这 ...

  6. POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)

    题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gc ...

  7. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  8. POJ 2429 GCD & LCM Inverse(Miller-Rabbin素性测试,Pollard rho质因子分解)

    x = lcm/gcd,假设答案为a,b,那么a*b = x且gcd(a,b) = 1,因为均值不等式所以当a越接近sqrt(x),a+b越小. x的范围是int64的,所以要用Pollard_rho ...

  9. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

随机推荐

  1. Weblogic12C 集群实现session同步

    测试地址:http://vanatita.com/ 刷新可以看见效果 读取 Session ID=gnFx9OTVFkfNOWCXFqQqeZi07m9BdHhvnqCv0Cq1t3n1EA2ljUG ...

  2. 同一个账号启动两个resin而要求使用不同jdk的解决方法

    天,一个老同事问起这样一个问题,起因是他们的系统由于某些原因原有的部分模块不能运行在新的jdk下,所以需要启动两个resin并使用不同jdk.由 于是要开机自动启动,因此启动的账号还需要是同一个.这样 ...

  3. 嘻哈帝国第一季/全集Empire迅雷下载

    英文译名Empire,第1季(2015-01-08)FOX.本季看点:<嘻哈帝国>卢西奥斯·莱恩是一名超级音乐明星兼Empire娱乐公司的创始人,故事讲述了他如何在困境和失败中运营公司的故 ...

  4. Nvidia驱动正确安装过程

    找到适合的正确的驱动 去nvidia驱动官网下载 卸载掉原有驱动 sudo apt-get remove –purge nvidia* 安装驱动 进入命令行界面 Ctrl-Alt+F1 给驱动run文 ...

  5. [Web 前端] MobX

    1. 介绍 1.1. 原理 React的render是 状态 转化为树状结构的渲染组件的方法 而MobX提供了一种存储,更新 状态 的方法 React 和 MobX都在优化着软件开发中相同的问题. R ...

  6. 如何看一段JAVA代码耗了多少内存

    简单的方法,如下: Runtime r = Runtime.getRuntime();  r.gc();  long startMem = r.freememory(); // 开始时的剩余内存  你 ...

  7. JAVA开发中文乱码的几个解决方案

    一:html乱码或者引入的JS乱码 1:第一步,text file encoding 首先确保文件的保存格式要UTF-8,如在eclipse中,要在文件上点属性,确保这里选择UTF-8 注意,在ecl ...

  8. Just-In-Time Debugging in Visual Studio 禁止VS在服务器上调试

    To disable Just-In-Time debugging by editing the registry On the Start menu, search for and run rege ...

  9. Android studio 编译失败Error:Could not read entry &#39;:app:processDebugManifest&#39; from cache taskArtifacts.b

    Android studio 编译失败 Error:Could not read entry ':app:processDebugManifest' from cache taskArtifacts. ...

  10. Windows8、Windows8.1使用便签工具

    Windows8.8.1没有了小工具,但是很多小工具实际上还是存在的,便签就是常用的小工具之一,既然系统自带就不用在安装第三方的了,使用方法: 启动或显示 Sticky Notes : Win+R-- ...