import mxnet as mx
import pdb
def load_checkpoint():
"""
Load model checkpoint from file.
:param prefix: Prefix of model name.
:param epoch: Epoch number of model we would like to load.
:return: (arg_params, aux_params)
arg_params : dict of str to NDArray
Model parameter, dict of name to NDArray of net's weights.
aux_params : dict of str to NDArray
Model parameter, dict of name to NDArray of net's auxiliary states.
"""
save_dict = mx.nd.load('model-0000.params')
arg_params = {}
aux_params = {}
for k, v in save_dict.items():
tp, name = k.split(':', 1)
if tp == 'arg':
arg_params[name] = v
if tp == 'aux':
aux_params[name] = v
return arg_params, aux_params def convert_context(params, ctx):
"""
:param params: dict of str to NDArray
:param ctx: the context to convert to
:return: dict of str of NDArray with context ctx
"""
new_params = dict()
for k, v in params.items():
new_params[k] = v.as_in_context(ctx)
#print new_params[0]
return new_params def load_param(convert=False, ctx=None):
"""
wrapper for load checkpoint
:param prefix: Prefix of model name.
:param epoch: Epoch number of model we would like to load.
:param convert: reference model should be converted to GPU NDArray first
:param ctx: if convert then ctx must be designated.
:return: (arg_params, aux_params)
"""
arg_params, aux_params = load_checkpoint()
if convert:
if ctx is None:
ctx = mx.cpu()
arg_params = convert_context(arg_params, ctx)
aux_params = convert_context(aux_params, ctx)
return arg_params, aux_params if __name__=='__main__':
result = load_param();
#pdb.set_trace()
print 'result is'
#print result
for dic in result:
for key in dic:
print(key,dic[key].shape)
# print 'one of results is:'
# print result[0]['fc2_weight'].asnumpy()

python showmxmodel.py 2>&1 | tee log.txt
result is
('stage3_unit2_bn1_beta', (256L,))
('stage3_unit2_bn3_beta', (256L,))
('stage3_unit11_bn1_gamma', (256L,))
('stage3_unit5_bn3_gamma', (256L,))
('stage3_unit3_conv1_weight', (256L, 256L, 3L, 3L))
('stage2_unit1_bn3_gamma', (128L,))
('stage3_unit4_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit12_bn3_beta', (256L,))
('stage2_unit2_bn3_beta', (128L,))
('conv0_weight', (64L, 3L, 3L, 3L))
('stage3_unit11_relu1_gamma', (256L,))
('stage4_unit1_conv1sc_weight', (512L, 256L, 1L, 1L))
('stage3_unit1_conv1sc_weight', (256L, 128L, 1L, 1L))
('bn1_beta', (512L,))
('stage1_unit2_bn2_beta', (64L,))
('stage3_unit2_conv2_weight', (256L, 256L, 3L, 3L))
('stage1_unit2_conv1_weight', (64L, 64L, 3L, 3L))
('stage3_unit14_bn2_beta', (256L,))
('stage4_unit2_bn3_beta', (512L,))
('stage3_unit8_bn1_gamma', (256L,))
('stage3_unit7_bn1_gamma', (256L,))
('stage2_unit3_bn1_beta', (128L,))
('stage2_unit4_conv1_weight', (128L, 128L, 3L, 3L))
('stage3_unit2_bn2_gamma', (256L,))
('stage1_unit1_conv1_weight', (64L, 64L, 3L, 3L))
('stage3_unit9_conv2_weight', (256L, 256L, 3L, 3L))
('stage3_unit13_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit1_relu1_gamma', (256L,))
('stage4_unit1_bn3_beta', (512L,))
('stage2_unit1_bn2_beta', (128L,))
('stage3_unit14_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit8_bn1_beta', (256L,))
('stage3_unit11_conv1_weight', (256L, 256L, 3L, 3L))
('stage1_unit1_bn3_gamma', (64L,))
('stage2_unit2_conv2_weight', (128L, 128L, 3L, 3L))
('stage4_unit2_bn1_gamma', (512L,))
('stage3_unit3_bn1_gamma', (256L,))
('stage1_unit3_bn2_gamma', (64L,))
('stage1_unit3_bn3_gamma', (64L,))
('stage4_unit2_relu1_gamma', (512L,))
('stage3_unit10_conv2_weight', (256L, 256L, 3L, 3L))
('stage3_unit12_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit2_relu1_gamma', (256L,))
('stage3_unit10_bn2_beta', (256L,))
('stage2_unit3_bn3_gamma', (128L,))
('stage2_unit3_bn2_beta', (128L,))
('stage3_unit8_bn3_beta', (256L,))
('fc1_gamma', (512L,))
('stage3_unit14_bn3_gamma', (256L,))
('stage3_unit9_bn3_gamma', (256L,))
('stage2_unit3_bn3_beta', (128L,))
('stage3_unit1_sc_gamma', (256L,))
('stage3_unit7_bn1_beta', (256L,))
('stage1_unit2_bn3_beta', (64L,))
('stage3_unit14_relu1_gamma', (256L,))
('stage3_unit13_bn2_beta', (256L,))
('stage2_unit1_conv1sc_weight', (128L, 64L, 1L, 1L))
('bn0_beta', (64L,))
('stage3_unit12_bn1_gamma', (256L,))
('stage2_unit1_sc_gamma', (128L,))
('relu0_gamma', (64L,))
('stage2_unit2_bn2_gamma', (128L,))
('stage3_unit4_relu1_gamma', (256L,))

Mxnet 查看模型params的网络结构的更多相关文章

  1. tensorflow 查看模型输入输出saved_model_cli show --dir ./xxxx --all

    saved_model_cli show --dir ./xxxxxxxx --all 可以查看模型的输入输出,比如使用tensorflow export_model_inference.py 输出的 ...

  2. 【tensorflow-v2.0】如何查看模型的输入输出流的属性

    操作过程: 1. 查看mobilenet的variables loaded = tf.saved_model.load('mobilenet') print('MobileNet has {} tra ...

  3. Tensorflow学习教程------模型参数和网络结构保存且载入,输入一张手写数字图片判断是几

    首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist impor ...

  4. 在3D Max中查看模型引用的贴图

    需求 假如在Max中有一个模型,想查看贴图 操作步骤 1.右上角点击 2.在弹出材质编辑器中 点击吸管 3.把吸管点击在角色模型上,然后点击M 4.点击查看图像 5.就能查看到模型使用的贴图

  5. pytorch查看模型weight与grad

    在用pdb debug的时候,有时候需要看一下特定layer的权重以及相应的梯度信息,如何查看呢? 1. 首先把你的模型打印出来,像这样 2. 然后观察到model下面有module的key,modu ...

  6. ROS学习笔记十一:创建URDF 文件并在RVIZ中查看模型

    Unified Robot Description Format,简称为URDF(标准化机器人描述格式),是一种用于描述机器人及其部分结构.关节.自由度等的XML格式文件. 一.创建第一个URDF文件 ...

  7. 【新人赛】阿里云恶意程序检测 -- 实践记录10.13 - Google Colab连接 / 数据简单查看 / 模型训练

    1. 比赛介绍 比赛地址:阿里云恶意程序检测新人赛 这个比赛和已结束的第三届阿里云安全算法挑战赛赛题类似,是一个开放的长期赛. 2. 前期准备 因为训练数据量比较大,本地CPU跑不起来,所以决定用Go ...

  8. mxnet 查看 Sym shape

    import mxnet as mximport numpy as npimport randomimport mxnet as mximport sysdata_shape = {'data':(6 ...

  9. keras API的使用,神经网络层,优化器,损失函数,查看模型层数,compile和fit训练

    layers介绍 Flatten和Dense介绍 优化器 损失函数 compile用法 第二个是onehot编码 模型训练 model.fit  两种创建模型的方法 from tensorflow.p ...

随机推荐

  1. HTML5学习笔记(二十三):DOM应用之动态加载脚本

    同步加载和执行JS的情况 在HTML页面的</body>表情之前添加的所有<script>标签,无论是直接嵌入JS代码还是引入外部js代码都是同步执行的,这里的同步执行指的是在 ...

  2. 【转】(六)unity4.6Ugui中文教程文档-------概要-UGUI Animation Integration

    原创至上,移步请戳:(六)unity4.6Ugui中文教程文档-------概要-UGUI Animation Integration 5.Animation Integration(动画集成) 动画 ...

  3. 【ARM】2410裸机系列-ADC数模转换

    开发环境   1.硬件平台:FS2410 2.主机:Ubuntu 12.04 ADC寄存器配置       1.初始化ADC(ADCCON) 设置预分频,预分频因子,选择A/D转换通道,并选择正常模式 ...

  4. 【内核】几个重要的linux内核文件

    Preface 当用户编译一个linux内核代码后,会产生几个文件:vmlinz.initrd.img, 以及System.map,如果配置过grub引导管理器程序,会在/boot目录下看到这几个文件 ...

  5. 【Linux技术】linux之configure,pkg-config和PKG_CONFIG_PATH

    linux之configure,pkg-config和PKG_CONFIG_PATH 1.初衷 1)前面在装gtk时冒出来一个pkg-config,当时虽然不大清楚它是个什么东西,不过大致了解了下它的 ...

  6. Linux中查看GNOME版本号

    在使用图形终端时,可以在虚拟终端中直接输入gnome-about,会弹出如下窗口. 或者在纯命令行模式下使用下面命令: $ gnome-about --gnome-version 注:Gnome 3. ...

  7. idea Error:(1, 10) java: 需要class, interface或enum, 未结束的字符串文字,Error:(55, 136) java: 非法字符: \65533

    1.未结束的字符串文字,Error:(55, 136) java: 非法字符: \65533  这些乱七吧八遭的错误如果很多的话 , 尝试 重新修改下生成目录 修改下语言等级 上述方法都不行 ,还报错 ...

  8. log4j打印错误异常的详细堆栈信息

    一.问题场景 使用Logger.error方法时只能打印出异常类型,无法打印出详细的堆栈信息,使得定位问题变得困难和不方便. 二.先放出结论 Logger类下有多个不同的error方法,根据传入参数的 ...

  9. 问题-DelphiXE10.1 FireDAC联接oracle数据库方法

    问题现象:安装oracle后,安装Delphi10.1,放FDConnection1时,选择"Ora"驱动时,提示如下: [FireDAC][Phys][Ora]-315. Can ...

  10. C#学习笔记(23)——C#将PPT批量转为JPG(aspose方法)

    说明(2017-7-31 18:30:25): 1. 最主要的是下载到aspose的破解文件,我在这里下载的http://www.lenosoft.net/down/10205.htm,如果不差钱可以 ...