import mxnet as mx
import pdb
def load_checkpoint():
"""
Load model checkpoint from file.
:param prefix: Prefix of model name.
:param epoch: Epoch number of model we would like to load.
:return: (arg_params, aux_params)
arg_params : dict of str to NDArray
Model parameter, dict of name to NDArray of net's weights.
aux_params : dict of str to NDArray
Model parameter, dict of name to NDArray of net's auxiliary states.
"""
save_dict = mx.nd.load('model-0000.params')
arg_params = {}
aux_params = {}
for k, v in save_dict.items():
tp, name = k.split(':', 1)
if tp == 'arg':
arg_params[name] = v
if tp == 'aux':
aux_params[name] = v
return arg_params, aux_params def convert_context(params, ctx):
"""
:param params: dict of str to NDArray
:param ctx: the context to convert to
:return: dict of str of NDArray with context ctx
"""
new_params = dict()
for k, v in params.items():
new_params[k] = v.as_in_context(ctx)
#print new_params[0]
return new_params def load_param(convert=False, ctx=None):
"""
wrapper for load checkpoint
:param prefix: Prefix of model name.
:param epoch: Epoch number of model we would like to load.
:param convert: reference model should be converted to GPU NDArray first
:param ctx: if convert then ctx must be designated.
:return: (arg_params, aux_params)
"""
arg_params, aux_params = load_checkpoint()
if convert:
if ctx is None:
ctx = mx.cpu()
arg_params = convert_context(arg_params, ctx)
aux_params = convert_context(aux_params, ctx)
return arg_params, aux_params if __name__=='__main__':
result = load_param();
#pdb.set_trace()
print 'result is'
#print result
for dic in result:
for key in dic:
print(key,dic[key].shape)
# print 'one of results is:'
# print result[0]['fc2_weight'].asnumpy()

python showmxmodel.py 2>&1 | tee log.txt
result is
('stage3_unit2_bn1_beta', (256L,))
('stage3_unit2_bn3_beta', (256L,))
('stage3_unit11_bn1_gamma', (256L,))
('stage3_unit5_bn3_gamma', (256L,))
('stage3_unit3_conv1_weight', (256L, 256L, 3L, 3L))
('stage2_unit1_bn3_gamma', (128L,))
('stage3_unit4_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit12_bn3_beta', (256L,))
('stage2_unit2_bn3_beta', (128L,))
('conv0_weight', (64L, 3L, 3L, 3L))
('stage3_unit11_relu1_gamma', (256L,))
('stage4_unit1_conv1sc_weight', (512L, 256L, 1L, 1L))
('stage3_unit1_conv1sc_weight', (256L, 128L, 1L, 1L))
('bn1_beta', (512L,))
('stage1_unit2_bn2_beta', (64L,))
('stage3_unit2_conv2_weight', (256L, 256L, 3L, 3L))
('stage1_unit2_conv1_weight', (64L, 64L, 3L, 3L))
('stage3_unit14_bn2_beta', (256L,))
('stage4_unit2_bn3_beta', (512L,))
('stage3_unit8_bn1_gamma', (256L,))
('stage3_unit7_bn1_gamma', (256L,))
('stage2_unit3_bn1_beta', (128L,))
('stage2_unit4_conv1_weight', (128L, 128L, 3L, 3L))
('stage3_unit2_bn2_gamma', (256L,))
('stage1_unit1_conv1_weight', (64L, 64L, 3L, 3L))
('stage3_unit9_conv2_weight', (256L, 256L, 3L, 3L))
('stage3_unit13_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit1_relu1_gamma', (256L,))
('stage4_unit1_bn3_beta', (512L,))
('stage2_unit1_bn2_beta', (128L,))
('stage3_unit14_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit8_bn1_beta', (256L,))
('stage3_unit11_conv1_weight', (256L, 256L, 3L, 3L))
('stage1_unit1_bn3_gamma', (64L,))
('stage2_unit2_conv2_weight', (128L, 128L, 3L, 3L))
('stage4_unit2_bn1_gamma', (512L,))
('stage3_unit3_bn1_gamma', (256L,))
('stage1_unit3_bn2_gamma', (64L,))
('stage1_unit3_bn3_gamma', (64L,))
('stage4_unit2_relu1_gamma', (512L,))
('stage3_unit10_conv2_weight', (256L, 256L, 3L, 3L))
('stage3_unit12_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit2_relu1_gamma', (256L,))
('stage3_unit10_bn2_beta', (256L,))
('stage2_unit3_bn3_gamma', (128L,))
('stage2_unit3_bn2_beta', (128L,))
('stage3_unit8_bn3_beta', (256L,))
('fc1_gamma', (512L,))
('stage3_unit14_bn3_gamma', (256L,))
('stage3_unit9_bn3_gamma', (256L,))
('stage2_unit3_bn3_beta', (128L,))
('stage3_unit1_sc_gamma', (256L,))
('stage3_unit7_bn1_beta', (256L,))
('stage1_unit2_bn3_beta', (64L,))
('stage3_unit14_relu1_gamma', (256L,))
('stage3_unit13_bn2_beta', (256L,))
('stage2_unit1_conv1sc_weight', (128L, 64L, 1L, 1L))
('bn0_beta', (64L,))
('stage3_unit12_bn1_gamma', (256L,))
('stage2_unit1_sc_gamma', (128L,))
('relu0_gamma', (64L,))
('stage2_unit2_bn2_gamma', (128L,))
('stage3_unit4_relu1_gamma', (256L,))

Mxnet 查看模型params的网络结构的更多相关文章

  1. tensorflow 查看模型输入输出saved_model_cli show --dir ./xxxx --all

    saved_model_cli show --dir ./xxxxxxxx --all 可以查看模型的输入输出,比如使用tensorflow export_model_inference.py 输出的 ...

  2. 【tensorflow-v2.0】如何查看模型的输入输出流的属性

    操作过程: 1. 查看mobilenet的variables loaded = tf.saved_model.load('mobilenet') print('MobileNet has {} tra ...

  3. Tensorflow学习教程------模型参数和网络结构保存且载入,输入一张手写数字图片判断是几

    首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist impor ...

  4. 在3D Max中查看模型引用的贴图

    需求 假如在Max中有一个模型,想查看贴图 操作步骤 1.右上角点击 2.在弹出材质编辑器中 点击吸管 3.把吸管点击在角色模型上,然后点击M 4.点击查看图像 5.就能查看到模型使用的贴图

  5. pytorch查看模型weight与grad

    在用pdb debug的时候,有时候需要看一下特定layer的权重以及相应的梯度信息,如何查看呢? 1. 首先把你的模型打印出来,像这样 2. 然后观察到model下面有module的key,modu ...

  6. ROS学习笔记十一:创建URDF 文件并在RVIZ中查看模型

    Unified Robot Description Format,简称为URDF(标准化机器人描述格式),是一种用于描述机器人及其部分结构.关节.自由度等的XML格式文件. 一.创建第一个URDF文件 ...

  7. 【新人赛】阿里云恶意程序检测 -- 实践记录10.13 - Google Colab连接 / 数据简单查看 / 模型训练

    1. 比赛介绍 比赛地址:阿里云恶意程序检测新人赛 这个比赛和已结束的第三届阿里云安全算法挑战赛赛题类似,是一个开放的长期赛. 2. 前期准备 因为训练数据量比较大,本地CPU跑不起来,所以决定用Go ...

  8. mxnet 查看 Sym shape

    import mxnet as mximport numpy as npimport randomimport mxnet as mximport sysdata_shape = {'data':(6 ...

  9. keras API的使用,神经网络层,优化器,损失函数,查看模型层数,compile和fit训练

    layers介绍 Flatten和Dense介绍 优化器 损失函数 compile用法 第二个是onehot编码 模型训练 model.fit  两种创建模型的方法 from tensorflow.p ...

随机推荐

  1. 60.自己定义View练习(五)高仿小米时钟 - 使用Camera和Matrix实现3D效果

    *本篇文章已授权微信公众号 guolin_blog (郭霖)独家公布 本文出自:猴菇先生的博客 http://blog.csdn.net/qq_31715429/article/details/546 ...

  2. error occurred during the file system check

    fsck -c 然后一路:y reboot 问题解决!!!

  3. 李洪强和你一起学习前端之(9)规避脱标,CSS可见性,滑动门案例

    1  复习昨天知识 1.1 浮动  特点: >浮动的元素不占位置(脱标) >可以将行内元素转化为行内块元素 >块级元素在一行上显示 >设置了浮动的元素,影响其后面的元素   作 ...

  4. 【Linux】了解服务器的情况

    Java程序大多数都部署在Unix环境,而环境的稳定性对于部署的应用至关重要,所以Java开发人员需知道了解Unix环境的命令. 系统版本 查看系统版本 [root@localhost third_p ...

  5. (转)Making 1 million requests with python-aiohttp

    转自:https://pawelmhm.github.io/asyncio/python/aiohttp/2016/04/22/asyncio-aiohttp.html Making 1 millio ...

  6. Windows下使用MINGW编译ffplay

    之前考虑到需要快速配置编译ffplay,使用了比较暴力的方法,具体可以参考编译ffplay.exe简化版. 这里介绍下相对规范的做法. 前提:已经安装了Windows下GCC开发环境--MINGW+m ...

  7. 非网络引用element-ui css导致图标无法正常显示的解决办法

    https://blog.csdn.net/m0_37893932/article/details/79460652 ***************************************** ...

  8. idea 设置字体

    1.设置 ui字体 修改编辑器的字体(也就是代码的字体):设置-Editor-Color&Font,默认的scheme是不可以更改的,你需要save as,建立一个新的(名字可以随意写个,My ...

  9. hdu3926(判断两个图是否相似,模版)

    题意:给你2个图,最大度为2.问两个图是否相似. 思路:图中有环.有链,判断环的个数以及每个环组成的人数,还有链的个数以及每个链组成的人数 是否相等即可. 如果形成了环,那么每形成一个环,结点数就会多 ...

  10. faster rcnn流程

    1.执行流程 数据准备 train_net.py中combined_roidb函数会调用get_imdb得到datasets中factory.py生成的imdb 然后调用fast_rcnn下的trai ...