Mxnet 查看模型params的网络结构
import mxnet as mx
import pdb
def load_checkpoint():
"""
Load model checkpoint from file.
:param prefix: Prefix of model name.
:param epoch: Epoch number of model we would like to load.
:return: (arg_params, aux_params)
arg_params : dict of str to NDArray
Model parameter, dict of name to NDArray of net's weights.
aux_params : dict of str to NDArray
Model parameter, dict of name to NDArray of net's auxiliary states.
"""
save_dict = mx.nd.load('model-0000.params')
arg_params = {}
aux_params = {}
for k, v in save_dict.items():
tp, name = k.split(':', 1)
if tp == 'arg':
arg_params[name] = v
if tp == 'aux':
aux_params[name] = v
return arg_params, aux_params def convert_context(params, ctx):
"""
:param params: dict of str to NDArray
:param ctx: the context to convert to
:return: dict of str of NDArray with context ctx
"""
new_params = dict()
for k, v in params.items():
new_params[k] = v.as_in_context(ctx)
#print new_params[0]
return new_params def load_param(convert=False, ctx=None):
"""
wrapper for load checkpoint
:param prefix: Prefix of model name.
:param epoch: Epoch number of model we would like to load.
:param convert: reference model should be converted to GPU NDArray first
:param ctx: if convert then ctx must be designated.
:return: (arg_params, aux_params)
"""
arg_params, aux_params = load_checkpoint()
if convert:
if ctx is None:
ctx = mx.cpu()
arg_params = convert_context(arg_params, ctx)
aux_params = convert_context(aux_params, ctx)
return arg_params, aux_params if __name__=='__main__':
result = load_param();
#pdb.set_trace()
print 'result is'
#print result
for dic in result:
for key in dic:
print(key,dic[key].shape)
# print 'one of results is:'
# print result[0]['fc2_weight'].asnumpy()
python showmxmodel.py 2>&1 | tee log.txt
result is
('stage3_unit2_bn1_beta', (256L,))
('stage3_unit2_bn3_beta', (256L,))
('stage3_unit11_bn1_gamma', (256L,))
('stage3_unit5_bn3_gamma', (256L,))
('stage3_unit3_conv1_weight', (256L, 256L, 3L, 3L))
('stage2_unit1_bn3_gamma', (128L,))
('stage3_unit4_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit12_bn3_beta', (256L,))
('stage2_unit2_bn3_beta', (128L,))
('conv0_weight', (64L, 3L, 3L, 3L))
('stage3_unit11_relu1_gamma', (256L,))
('stage4_unit1_conv1sc_weight', (512L, 256L, 1L, 1L))
('stage3_unit1_conv1sc_weight', (256L, 128L, 1L, 1L))
('bn1_beta', (512L,))
('stage1_unit2_bn2_beta', (64L,))
('stage3_unit2_conv2_weight', (256L, 256L, 3L, 3L))
('stage1_unit2_conv1_weight', (64L, 64L, 3L, 3L))
('stage3_unit14_bn2_beta', (256L,))
('stage4_unit2_bn3_beta', (512L,))
('stage3_unit8_bn1_gamma', (256L,))
('stage3_unit7_bn1_gamma', (256L,))
('stage2_unit3_bn1_beta', (128L,))
('stage2_unit4_conv1_weight', (128L, 128L, 3L, 3L))
('stage3_unit2_bn2_gamma', (256L,))
('stage1_unit1_conv1_weight', (64L, 64L, 3L, 3L))
('stage3_unit9_conv2_weight', (256L, 256L, 3L, 3L))
('stage3_unit13_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit1_relu1_gamma', (256L,))
('stage4_unit1_bn3_beta', (512L,))
('stage2_unit1_bn2_beta', (128L,))
('stage3_unit14_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit8_bn1_beta', (256L,))
('stage3_unit11_conv1_weight', (256L, 256L, 3L, 3L))
('stage1_unit1_bn3_gamma', (64L,))
('stage2_unit2_conv2_weight', (128L, 128L, 3L, 3L))
('stage4_unit2_bn1_gamma', (512L,))
('stage3_unit3_bn1_gamma', (256L,))
('stage1_unit3_bn2_gamma', (64L,))
('stage1_unit3_bn3_gamma', (64L,))
('stage4_unit2_relu1_gamma', (512L,))
('stage3_unit10_conv2_weight', (256L, 256L, 3L, 3L))
('stage3_unit12_conv1_weight', (256L, 256L, 3L, 3L))
('stage3_unit2_relu1_gamma', (256L,))
('stage3_unit10_bn2_beta', (256L,))
('stage2_unit3_bn3_gamma', (128L,))
('stage2_unit3_bn2_beta', (128L,))
('stage3_unit8_bn3_beta', (256L,))
('fc1_gamma', (512L,))
('stage3_unit14_bn3_gamma', (256L,))
('stage3_unit9_bn3_gamma', (256L,))
('stage2_unit3_bn3_beta', (128L,))
('stage3_unit1_sc_gamma', (256L,))
('stage3_unit7_bn1_beta', (256L,))
('stage1_unit2_bn3_beta', (64L,))
('stage3_unit14_relu1_gamma', (256L,))
('stage3_unit13_bn2_beta', (256L,))
('stage2_unit1_conv1sc_weight', (128L, 64L, 1L, 1L))
('bn0_beta', (64L,))
('stage3_unit12_bn1_gamma', (256L,))
('stage2_unit1_sc_gamma', (128L,))
('relu0_gamma', (64L,))
('stage2_unit2_bn2_gamma', (128L,))
('stage3_unit4_relu1_gamma', (256L,))
Mxnet 查看模型params的网络结构的更多相关文章
- tensorflow 查看模型输入输出saved_model_cli show --dir ./xxxx --all
saved_model_cli show --dir ./xxxxxxxx --all 可以查看模型的输入输出,比如使用tensorflow export_model_inference.py 输出的 ...
- 【tensorflow-v2.0】如何查看模型的输入输出流的属性
操作过程: 1. 查看mobilenet的variables loaded = tf.saved_model.load('mobilenet') print('MobileNet has {} tra ...
- Tensorflow学习教程------模型参数和网络结构保存且载入,输入一张手写数字图片判断是几
首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist impor ...
- 在3D Max中查看模型引用的贴图
需求 假如在Max中有一个模型,想查看贴图 操作步骤 1.右上角点击 2.在弹出材质编辑器中 点击吸管 3.把吸管点击在角色模型上,然后点击M 4.点击查看图像 5.就能查看到模型使用的贴图
- pytorch查看模型weight与grad
在用pdb debug的时候,有时候需要看一下特定layer的权重以及相应的梯度信息,如何查看呢? 1. 首先把你的模型打印出来,像这样 2. 然后观察到model下面有module的key,modu ...
- ROS学习笔记十一:创建URDF 文件并在RVIZ中查看模型
Unified Robot Description Format,简称为URDF(标准化机器人描述格式),是一种用于描述机器人及其部分结构.关节.自由度等的XML格式文件. 一.创建第一个URDF文件 ...
- 【新人赛】阿里云恶意程序检测 -- 实践记录10.13 - Google Colab连接 / 数据简单查看 / 模型训练
1. 比赛介绍 比赛地址:阿里云恶意程序检测新人赛 这个比赛和已结束的第三届阿里云安全算法挑战赛赛题类似,是一个开放的长期赛. 2. 前期准备 因为训练数据量比较大,本地CPU跑不起来,所以决定用Go ...
- mxnet 查看 Sym shape
import mxnet as mximport numpy as npimport randomimport mxnet as mximport sysdata_shape = {'data':(6 ...
- keras API的使用,神经网络层,优化器,损失函数,查看模型层数,compile和fit训练
layers介绍 Flatten和Dense介绍 优化器 损失函数 compile用法 第二个是onehot编码 模型训练 model.fit 两种创建模型的方法 from tensorflow.p ...
随机推荐
- vivado保存debug波形
vivado保存debug波形 Vivado下debug后的波形通过图形化界面并不能保存抓取到波形,保存按钮只是保存波形配置,如果需要保存波形需要通过TCL命令来实现: write_hw_ila_ ...
- 读取JPG图片的Exif属性(一) - Exif信息简介
https://blog.csdn.net/fioletfly/article/details/53605959 https://blog.csdn.net/a_big_pig/article/det ...
- glob 文件或目录查找
glob模块是最简单的模块之一,内容非常少.用它可以查找符合特定规则的文件或目录(含相对或绝对路径).跟使用windows下的文件搜索差不多. 在python中,glob模块是用来查找匹配的文件的 在 ...
- sessionStorage 、localStorage、cookie
特性 cookie localStorage sessionStorage 存储 浏览器端,同源限制 浏览器端,同源限制 浏览器端,同源限制 容量 <=4K 5 ...
- Java 编程下字符串的 16 位、32位 MD5 加密
package cn.sunzn.md5; import java.security.MessageDigest; import java.security.NoSuchAlgorithmExcept ...
- sql2005分页储存过程和C#分页类
1.sql2005分页储存过程 --sql2005,qq524365501 create Procedure up_page2005 ), -- 表名称 ), -- 列 ), -- 主键,用于统计总数 ...
- FFmpeg Basics学习笔记(2)
帧率 fps的概念 帧率,单位FPS(frame per second), 用于衡量视频每秒的处理帧数,对于编码器而言说明编码器在1s的编码的速度,通常可以使用一帧的编码时间倒数简单计算:对于解码器而 ...
- Django admin 常用方法
1.调整页面头部显示内容和页面标题 #admin.py admin.site.site_header = '广告业务系统' admin.site.site_title = '广告业务系统'
- Redis之 命令行 操作
一.key pattern 查询相应的key (1)redis允许模糊查询key 有3个通配符 *.?.[] (2)randomkey:返回随机key (3)type key:返回key存储的类型 ...
- Python中斐波那契数列的四种写法
在这些时候,我可以附和着笑,项目经理是决不责备的.而且项目经理见了孔乙己,也每每这样问他,引人发笑.孔乙己自己知道不能和他们谈天,便只好向新人说话.有一回对我说道,“你学过数据结构吗?”我略略点一点头 ...