2. 感知机(Perceptron)基本形式和对偶形式实现
1. 感知机原理(Perceptron)
2. 感知机(Perceptron)基本形式和对偶形式实现
3. 支持向量机(SVM)拉格朗日对偶性(KKT)
4. 支持向量机(SVM)原理
5. 支持向量机(SVM)软间隔
6. 支持向量机(SVM)核函数
1. 前言
今天终于能把感知机的实现补上了,感知机的原理在1. 感知机原理(Perceptron)中已经详尽的介绍,今天就是对感知机的两种实现方式,进行讲解。
2. 感知机实现
2.1 原始形式算法
假设读者们已经了解了感知机的原始形式的原理(不熟悉的请看1. 感知机原理(Perceptron)原始形式),下面是原始形式的步骤,方便对照后面的代码。
原始形式的步骤:
输入:训练数据集\(T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}\),\(y_i\in{\{-1,+1\}}\),学习率\(\eta(0<\eta<1)\)
输出:\(w,b\);感知机模型\(f(x)=sign(w\cdot {x}+b)\)
- 赋初值 \(w_0,b_0\)
- 选取数据点\((x_i,y_i)\)
- 判断该数据点是否为当前模型的误分类点,即判断若\(y_i(w\cdot {x_i}+b)<=0\)则更新
\]
\]
- 转到2,直到训练集中没有误分类点
主要实现代码GitHub:
def fit(self, X, y):
# 初始化参数w,b
self.w = np.zeros(X.shape[1])
self.b = 0
# 记录所有error
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi, yi in zip(X, y):
update = self.eta * (yi - self.predict(xi))
self.w += update * xi
self.b += update
errors += int(update != 0.0)
if errors == 0:
break
self.errors_.append(errors)
return self
2.2 对偶形式算法
假设读者们已经了解了感知机的对偶形式的原理(不熟悉的请看1. 感知机原理(Perceptron)对偶形式),下面是对偶形式的步骤,方便对照后面的代码。
对偶形式的步骤:
由于\(w,b\)的梯度更新公式:
\]
\]
我们的\(w,b\)经过了\(n\)次修改后的,参数可以变化为下公式,其中\(\alpha = ny\):
\]
\]
这样我们就得出了感知机的对偶算法。
输入:训练数据集\(T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}\),\(y_i\in{\{-1,+1\}}\),学习率\(\eta(0<\eta<1)\)
输出:\(\alpha,b\);感知机模型\(f(x)=sign(\sum_{j=1}^n\alpha_jy_jx_j\cdot {x}+b)\)
其中\(\alpha=(\alpha_1,\alpha_2,...,\alpha_n)^T\)
- 赋初值 \(\alpha_0,b_0\)
- 选取数据点\((x_i,y_i)\)
- 判断该数据点是否为当前模型的误分类点,即判断若\(y_i(\sum_{j=1}^n\alpha_jy_jx_j\cdot {x_i}+b)<=0\)则更新
\]
\]
- 转到2,直到训练集中没有误分类点
为了减少计算量,我们可以预先计算式中的内积,得到Gram矩阵
\]
主要实现代码GitHub:
def fit(self, X, y):
"""
对偶形态的感知机
由于对偶形式中训练实例仅以内积的形式出现
因此,若事先求出Gram Matrix,能大大减少计算量
"""
# 读取数据集中含有的样本数,特征向量数
n_samples, n_features = X.shape
self.alpha, self.b = [0] * n_samples, 0
self.w = np.zeros(n_features)
# 计算Gram_Matrix
self.calculate_g_matrix(X)
i = 0
while i < n_samples:
if self.judge(X, y, i) <= 0:
self.alpha[i] += self.eta
self.b += self.eta * y[i]
i = 0
else:
i += 1
for j in range(n_samples):
self.w += self.alpha[j] * X[j] * y[j]
return self
3. 小结
感知机算法是一个简单易懂的算法,自己编程实现也不太难。前面提到它是很多算法的鼻祖,比如支持向量机算法,神经网络与深度学习。因此虽然它现在已经不是一个在实践中广泛运用的算法,还是值得好好的去研究一下。感知机算法对偶形式为什么在实际运用中比原始形式快,也值得好好去体会。
2. 感知机(Perceptron)基本形式和对偶形式实现的更多相关文章
- 感知机(perceptron)概念与实现
感知机(perceptron) 模型: 简答的说由输入空间(特征空间)到输出空间的如下函数: \[f(x)=sign(w\cdot x+b)\] 称为感知机,其中,\(w\)和\(b\)表示的是感知机 ...
- 20151227感知机(perceptron)
1 感知机 1.1 感知机定义 感知机是一个二分类的线性分类模型,其生成一个分离超平面将实例的特征向量,输出为+1,-1.导入基于误分类的损失函数,利用梯度下降法对损失函数极小化,从而求得此超平面,该 ...
- 感知机(perceptron)
- 神经网络 感知机 Perceptron python实现
import numpy as np import matplotlib.pyplot as plt import math def create_data(w1=3,w2=-7,b=4,seed=1 ...
- 1. 感知机原理(Perceptron)
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 3. 支持向量机(SVM)拉格朗日对偶性(KKT)
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 6. 支持向量机(SVM)核函数
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 5. 支持向量机(SVM)软间隔
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 4. 支持向量机(SVM)原理
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
随机推荐
- Sentinel 简介与API订阅发布
Sentinel 简介 Redis 的 Sentinel 系统用于管理多个 redis 服务器(instance), 该系统执行以下三个任务: 监控(Monitoring): Sentinel 会不断 ...
- Transparent Huge Pages
在RHEL6中,透明大页功能是默认开启的. 开启该选项后,内核会尽可能地尝试分配大页,如果mmap区域是2mb,那么每个linux进程都会分配到2mb大小的页.如果大页不够用了(比如物理内存不够了), ...
- 【转】Tesla Autopilot
Tesla Autopilot 以下内容是<Tesla Model S的设计失误>一文中新加入的小节.由于写作时间相距太远,而且由于它的时效性,现在也把它单独提出来,独立成文. 两个月前, ...
- C++编程技巧降低编译时间
1. #define的保护 全部头文件都应该使用#define 防止头文件被多重包括(multiple inclusion).命名格式 当是:<PROJECT>_<PATH>_ ...
- 图床神器:七牛云 + Mpic + FScapture
概述 最近在搞Markdown的东西,遇到了一个很棘手的问题,即图片的显示:通用的图片,可以直接网上搜索,但有时候需要自己截一些图或者对下载的图片进行修改,在本地存储完全没有问题,但Markdown写 ...
- jms异步转同步调用实例
思路: 当主线程调用异步方法时,将自己挂起,并把引用交给jms的监听: 当监听收到返回的消息时,处理并唤醒主线程继续执行(可以获取和处理返回的消息) Test.java package com.my. ...
- java-Spring 管理bean例子
Spring 通过2种方式管理bean 首先要导入Spring的包,(Spring.jar和commonslogging.jar) 或加载分开的... 在src目录下建立applicationCont ...
- hbase操作
名称命令表达式 创建表create '表名称','列簇名称1','列簇名称2'....... 添加记录put '表名称', '行名称','列簇名称:','值' 查看记录get '表名称','行名称' ...
- Error:Cause: org/gradle/api/publication/maven/internal/DefaultMavenFactory Android
首先,要看一下自己的项目使用 “Gradle版本” 接着要看一下项目根目录的build.gradle文件中的“dependencies”的 classpath 'com.github.dcendent ...
- PreparedStatement用途
关于PreparedStatement接口,需要重点记住的是:1. PreparedStatement可以写参数化查询,比Statement能获得更好的性能.2. 对于PreparedStatemen ...