2. 感知机(Perceptron)基本形式和对偶形式实现
1. 感知机原理(Perceptron)
2. 感知机(Perceptron)基本形式和对偶形式实现
3. 支持向量机(SVM)拉格朗日对偶性(KKT)
4. 支持向量机(SVM)原理
5. 支持向量机(SVM)软间隔
6. 支持向量机(SVM)核函数
1. 前言
今天终于能把感知机的实现补上了,感知机的原理在1. 感知机原理(Perceptron)中已经详尽的介绍,今天就是对感知机的两种实现方式,进行讲解。
2. 感知机实现
2.1 原始形式算法
假设读者们已经了解了感知机的原始形式的原理(不熟悉的请看1. 感知机原理(Perceptron)原始形式),下面是原始形式的步骤,方便对照后面的代码。
原始形式的步骤:
输入:训练数据集\(T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}\),\(y_i\in{\{-1,+1\}}\),学习率\(\eta(0<\eta<1)\)
输出:\(w,b\);感知机模型\(f(x)=sign(w\cdot {x}+b)\)
- 赋初值 \(w_0,b_0\)
- 选取数据点\((x_i,y_i)\)
- 判断该数据点是否为当前模型的误分类点,即判断若\(y_i(w\cdot {x_i}+b)<=0\)则更新
\]
\]
- 转到2,直到训练集中没有误分类点
主要实现代码GitHub:
def fit(self, X, y):
# 初始化参数w,b
self.w = np.zeros(X.shape[1])
self.b = 0
# 记录所有error
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi, yi in zip(X, y):
update = self.eta * (yi - self.predict(xi))
self.w += update * xi
self.b += update
errors += int(update != 0.0)
if errors == 0:
break
self.errors_.append(errors)
return self
2.2 对偶形式算法
假设读者们已经了解了感知机的对偶形式的原理(不熟悉的请看1. 感知机原理(Perceptron)对偶形式),下面是对偶形式的步骤,方便对照后面的代码。
对偶形式的步骤:
由于\(w,b\)的梯度更新公式:
\]
\]
我们的\(w,b\)经过了\(n\)次修改后的,参数可以变化为下公式,其中\(\alpha = ny\):
\]
\]
这样我们就得出了感知机的对偶算法。
输入:训练数据集\(T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}\),\(y_i\in{\{-1,+1\}}\),学习率\(\eta(0<\eta<1)\)
输出:\(\alpha,b\);感知机模型\(f(x)=sign(\sum_{j=1}^n\alpha_jy_jx_j\cdot {x}+b)\)
其中\(\alpha=(\alpha_1,\alpha_2,...,\alpha_n)^T\)
- 赋初值 \(\alpha_0,b_0\)
- 选取数据点\((x_i,y_i)\)
- 判断该数据点是否为当前模型的误分类点,即判断若\(y_i(\sum_{j=1}^n\alpha_jy_jx_j\cdot {x_i}+b)<=0\)则更新
\]
\]
- 转到2,直到训练集中没有误分类点
为了减少计算量,我们可以预先计算式中的内积,得到Gram矩阵
\]
主要实现代码GitHub:
def fit(self, X, y):
"""
对偶形态的感知机
由于对偶形式中训练实例仅以内积的形式出现
因此,若事先求出Gram Matrix,能大大减少计算量
"""
# 读取数据集中含有的样本数,特征向量数
n_samples, n_features = X.shape
self.alpha, self.b = [0] * n_samples, 0
self.w = np.zeros(n_features)
# 计算Gram_Matrix
self.calculate_g_matrix(X)
i = 0
while i < n_samples:
if self.judge(X, y, i) <= 0:
self.alpha[i] += self.eta
self.b += self.eta * y[i]
i = 0
else:
i += 1
for j in range(n_samples):
self.w += self.alpha[j] * X[j] * y[j]
return self
3. 小结
感知机算法是一个简单易懂的算法,自己编程实现也不太难。前面提到它是很多算法的鼻祖,比如支持向量机算法,神经网络与深度学习。因此虽然它现在已经不是一个在实践中广泛运用的算法,还是值得好好的去研究一下。感知机算法对偶形式为什么在实际运用中比原始形式快,也值得好好去体会。
2. 感知机(Perceptron)基本形式和对偶形式实现的更多相关文章
- 感知机(perceptron)概念与实现
感知机(perceptron) 模型: 简答的说由输入空间(特征空间)到输出空间的如下函数: \[f(x)=sign(w\cdot x+b)\] 称为感知机,其中,\(w\)和\(b\)表示的是感知机 ...
- 20151227感知机(perceptron)
1 感知机 1.1 感知机定义 感知机是一个二分类的线性分类模型,其生成一个分离超平面将实例的特征向量,输出为+1,-1.导入基于误分类的损失函数,利用梯度下降法对损失函数极小化,从而求得此超平面,该 ...
- 感知机(perceptron)
- 神经网络 感知机 Perceptron python实现
import numpy as np import matplotlib.pyplot as plt import math def create_data(w1=3,w2=-7,b=4,seed=1 ...
- 1. 感知机原理(Perceptron)
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 3. 支持向量机(SVM)拉格朗日对偶性(KKT)
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 6. 支持向量机(SVM)核函数
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 5. 支持向量机(SVM)软间隔
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 4. 支持向量机(SVM)原理
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
随机推荐
- Rplidar学习(三)—— ROS下进行rplidar调试
一.建立工作空间.编译包 mkdir -p ~/catkin_rplidar/src #创建目录 cd ~/catkin_rplidar/src #打开目录 #下载rplidar_ros数据包,进行移 ...
- Spring Cloud启动应用时指定IP或忽略某张网卡配置
说明:分布式应用部署到服务上,由于服务器可能存在多张网卡,造成IP地址不准的问题. 解决方法: 1.直接添加忽略某张网卡的配置: spring.cloud.inetutils.ignored-inte ...
- .Net Core ORM选择之路,哪个才适合你 通用查询类封装之Mongodb篇 Snowflake(雪花算法)的JavaScript实现 【开发记录】如何在B/S项目中使用中国天气的实时天气功能 【开发记录】微信小游戏开发入门——俄罗斯方块
.Net Core ORM选择之路,哪个才适合你 因为老板的一句话公司项目需要迁移到.Net Core ,但是以前同事用的ORM不支持.Net Core 开发过程也遇到了各种坑,插入条数多了也特别 ...
- JDBC连接SQLServer出现的异常
数据库连接. question1. java.lang.ClassNotFoundException: com.microsoft.sqlserver.jdbc.SQLServerDriver 异常 ...
- ural 1091. Tmutarakan Exams(容斥)
http://acm.timus.ru/problem.aspx? space=1&num=1091 从1~s中选出k个数,使得k个数的最大公约数大于1,问这种取法有多少种. (2<=k ...
- Bitter Sweet Symphony
当我写下这段话时,另一个我觉醒了. 时间仿佛一下子从2013年的末尾跳到了2014年了,是那么的猝不及防.1990——2014,24岁了,一瞬间,不知不觉已经走过了24个岁月了.过去,我时常会反省着, ...
- 关于 f 散度
在概率统计中,f散度是一个函数,这个函数用来衡量两个概率密度p和q的区别,也就是衡量这两个分布多么的相同或者不同. 1.f散度的定义p和q是同一个空间中的两个概率密度函数,它们之间的f散度可以用如下方 ...
- java字符串拼接的几种方式
1. plus方式 当左右两个量其中有一个为String类型时,用plus方式可将两个量转成字符串并拼接. String a="";int b=0xb;String c=a+b;2 ...
- win7重命名文件时 提示 “指定的设备名无效”的解决办法
同事从mac上传一个文件夹到win7上,但是少了一张图片con.jpg.查了半天发现将备份文件改名为con.jpg时提示 “指定的设备名无效”. 谷歌了下,发现了问题所在.坑爹的win7. 从不同的系 ...
- spring 项目中在类中注入静态字段
有时spring 项目中需要将配置文件的属性注入到类的静态字段中 例如:文件上传 //文件上传指定上传位置 //resource-dev.properties 有如下参数 #upload UPLOAD ...