1. 感知机原理(Perceptron)

2. 感知机(Perceptron)基本形式和对偶形式实现

3. 支持向量机(SVM)拉格朗日对偶性(KKT)

4. 支持向量机(SVM)原理

5. 支持向量机(SVM)软间隔

6. 支持向量机(SVM)核函数

1. 前言

今天终于能把感知机的实现补上了,感知机的原理在1. 感知机原理(Perceptron)中已经详尽的介绍,今天就是对感知机的两种实现方式,进行讲解。

2. 感知机实现

2.1 原始形式算法

假设读者们已经了解了感知机的原始形式的原理(不熟悉的请看1. 感知机原理(Perceptron)原始形式),下面是原始形式的步骤,方便对照后面的代码。

原始形式的步骤:

输入:训练数据集\(T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}\),\(y_i\in{\{-1,+1\}}\),学习率\(\eta(0<\eta<1)\)

输出:\(w,b\);感知机模型\(f(x)=sign(w\cdot {x}+b)\)

  1. 赋初值 \(w_0,b_0\)
  2. 选取数据点\((x_i,y_i)\)
  3. 判断该数据点是否为当前模型的误分类点,即判断若\(y_i(w\cdot {x_i}+b)<=0\)则更新

\[w={w+\eta{y_ix_i}}
\]

\[b={b+\eta{y_i}}
\]

  1. 转到2,直到训练集中没有误分类点

主要实现代码GitHub

def fit(self, X, y):
# 初始化参数w,b
self.w = np.zeros(X.shape[1])
self.b = 0
# 记录所有error
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi, yi in zip(X, y):
update = self.eta * (yi - self.predict(xi))
self.w += update * xi
self.b += update
errors += int(update != 0.0)
if errors == 0:
break
self.errors_.append(errors) return self

2.2 对偶形式算法

假设读者们已经了解了感知机的对偶形式的原理(不熟悉的请看1. 感知机原理(Perceptron)对偶形式),下面是对偶形式的步骤,方便对照后面的代码。

对偶形式的步骤:

由于\(w,b\)的梯度更新公式:

\[w={w+\eta{y_ix_i}}
\]

\[b={b+\eta{y_i}}
\]

我们的\(w,b\)经过了\(n\)次修改后的,参数可以变化为下公式,其中\(\alpha = ny\):

\[w=\sum_{x_i\in{M}}\eta{y_ix_i}=\sum_{i=1}^n\alpha_iy_ix_i
\]

\[b=\sum_{x_i\in{M}}\eta{y_i}=\sum_{i=1}^n\alpha_iy_i
\]

这样我们就得出了感知机的对偶算法。

输入:训练数据集\(T={(x_1,y_1),(x_2,y_2),...,(x_N,y_N)}\),\(y_i\in{\{-1,+1\}}\),学习率\(\eta(0<\eta<1)\)

输出:\(\alpha,b\);感知机模型\(f(x)=sign(\sum_{j=1}^n\alpha_jy_jx_j\cdot {x}+b)\)

其中\(\alpha=(\alpha_1,\alpha_2,...,\alpha_n)^T\)

  1. 赋初值 \(\alpha_0,b_0\)
  2. 选取数据点\((x_i,y_i)\)
  3. 判断该数据点是否为当前模型的误分类点,即判断若\(y_i(\sum_{j=1}^n\alpha_jy_jx_j\cdot {x_i}+b)<=0\)则更新

\[\alpha_i={\alpha_i+\eta}
\]

\[b={b+\eta{y_i}}
\]

  1. 转到2,直到训练集中没有误分类点

为了减少计算量,我们可以预先计算式中的内积,得到Gram矩阵

\[G=[x_i,x_j]_{N×N}
\]

主要实现代码GitHub

def fit(self, X, y):
"""
对偶形态的感知机
由于对偶形式中训练实例仅以内积的形式出现
因此,若事先求出Gram Matrix,能大大减少计算量
"""
# 读取数据集中含有的样本数,特征向量数
n_samples, n_features = X.shape
self.alpha, self.b = [0] * n_samples, 0
self.w = np.zeros(n_features)
# 计算Gram_Matrix
self.calculate_g_matrix(X) i = 0
while i < n_samples:
if self.judge(X, y, i) <= 0:
self.alpha[i] += self.eta
self.b += self.eta * y[i]
i = 0
else:
i += 1 for j in range(n_samples):
self.w += self.alpha[j] * X[j] * y[j] return self

3. 小结

感知机算法是一个简单易懂的算法,自己编程实现也不太难。前面提到它是很多算法的鼻祖,比如支持向量机算法,神经网络与深度学习。因此虽然它现在已经不是一个在实践中广泛运用的算法,还是值得好好的去研究一下。感知机算法对偶形式为什么在实际运用中比原始形式快,也值得好好去体会。

2. 感知机(Perceptron)基本形式和对偶形式实现的更多相关文章

  1. 感知机(perceptron)概念与实现

    感知机(perceptron) 模型: 简答的说由输入空间(特征空间)到输出空间的如下函数: \[f(x)=sign(w\cdot x+b)\] 称为感知机,其中,\(w\)和\(b\)表示的是感知机 ...

  2. 20151227感知机(perceptron)

    1 感知机 1.1 感知机定义 感知机是一个二分类的线性分类模型,其生成一个分离超平面将实例的特征向量,输出为+1,-1.导入基于误分类的损失函数,利用梯度下降法对损失函数极小化,从而求得此超平面,该 ...

  3. 感知机(perceptron)

  4. 神经网络 感知机 Perceptron python实现

    import numpy as np import matplotlib.pyplot as plt import math def create_data(w1=3,w2=-7,b=4,seed=1 ...

  5. 1. 感知机原理(Perceptron)

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  6. 3. 支持向量机(SVM)拉格朗日对偶性(KKT)

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  7. 6. 支持向量机(SVM)核函数

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  8. 5. 支持向量机(SVM)软间隔

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  9. 4. 支持向量机(SVM)原理

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

随机推荐

  1. Sentinel 简介与API订阅发布

    Sentinel 简介 Redis 的 Sentinel 系统用于管理多个 redis 服务器(instance), 该系统执行以下三个任务: 监控(Monitoring): Sentinel 会不断 ...

  2. Transparent Huge Pages

    在RHEL6中,透明大页功能是默认开启的. 开启该选项后,内核会尽可能地尝试分配大页,如果mmap区域是2mb,那么每个linux进程都会分配到2mb大小的页.如果大页不够用了(比如物理内存不够了), ...

  3. 【转】Tesla Autopilot

    Tesla Autopilot 以下内容是<Tesla Model S的设计失误>一文中新加入的小节.由于写作时间相距太远,而且由于它的时效性,现在也把它单独提出来,独立成文. 两个月前, ...

  4. C++编程技巧降低编译时间

    1. #define的保护 全部头文件都应该使用#define 防止头文件被多重包括(multiple inclusion).命名格式 当是:<PROJECT>_<PATH>_ ...

  5. 图床神器:七牛云 + Mpic + FScapture

    概述 最近在搞Markdown的东西,遇到了一个很棘手的问题,即图片的显示:通用的图片,可以直接网上搜索,但有时候需要自己截一些图或者对下载的图片进行修改,在本地存储完全没有问题,但Markdown写 ...

  6. jms异步转同步调用实例

    思路: 当主线程调用异步方法时,将自己挂起,并把引用交给jms的监听: 当监听收到返回的消息时,处理并唤醒主线程继续执行(可以获取和处理返回的消息) Test.java package com.my. ...

  7. java-Spring 管理bean例子

    Spring 通过2种方式管理bean 首先要导入Spring的包,(Spring.jar和commonslogging.jar) 或加载分开的... 在src目录下建立applicationCont ...

  8. hbase操作

    名称命令表达式 创建表create '表名称','列簇名称1','列簇名称2'....... 添加记录put '表名称', '行名称','列簇名称:','值' 查看记录get '表名称','行名称' ...

  9. Error:Cause: org/gradle/api/publication/maven/internal/DefaultMavenFactory Android

    首先,要看一下自己的项目使用 “Gradle版本” 接着要看一下项目根目录的build.gradle文件中的“dependencies”的 classpath 'com.github.dcendent ...

  10. PreparedStatement用途

    关于PreparedStatement接口,需要重点记住的是:1. PreparedStatement可以写参数化查询,比Statement能获得更好的性能.2. 对于PreparedStatemen ...