[LeetCode&Python] Problem 883. Projection Area of 3D Shapes
On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes.
Each value v = grid[i][j] represents a tower of v cubes placed on top of grid cell (i, j).
Now we view the projection of these cubes onto the xy, yz, and zx planes.
A projection is like a shadow, that maps our 3 dimensional figure to a 2 dimensional plane.
Here, we are viewing the "shadow" when looking at the cubes from the top, the front, and the side.
Return the total area of all three projections.
Example 1:
Input: [[2]]
Output: 5
Example 2:
Input: [[1,2],[3,4]]
Output: 17
Explanation:
Here are the three projections ("shadows") of the shape made with each axis-aligned plane.
![]()
Example 3:
Input: [[1,0],[0,2]]
Output: 8
Example 4:
Input: [[1,1,1],[1,0,1],[1,1,1]]
Output: 14
Example 5:
Input: [[2,2,2],[2,1,2],[2,2,2]]
Output: 21
Note:
1 <= grid.length = grid[0].length <= 500 <= grid[i][j] <= 50
This problem is just like the problem 807. We just need to find the max element in each row and column and find the number of nonzero elements. Then the sum of them is the answer.
class Solution:
def projectionArea(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
""" rAf=sum([max(r) for r in grid])+sum([max(c) for c in zip(*grid)]) m=len(grid)
n=len(grid[0]) num=0 for r in grid:
num+=r.count(0) return (m*n-num)+rAf
[LeetCode&Python] Problem 883. Projection Area of 3D Shapes的更多相关文章
- [LeetCode&Python] Problem 892. Surface Area of 3D Shapes
On a N * N grid, we place some 1 * 1 * 1 cubes. Each value v = grid[i][j] represents a tower of v cu ...
- 【Leetcode_easy】883. Projection Area of 3D Shapes
problem 883. Projection Area of 3D Shapes 参考 1. Leetcode_easy_883. Projection Area of 3D Shapes; 完
- 883. Projection Area of 3D Shapes
问题 NxN个格子中,用1x1x1的立方体堆叠,grid[i][j]表示坐标格上堆叠的立方体个数,求三视图面积. Input: [[1,2],[3,4]] Output: 17 Explanation ...
- 【LeetCode】883. Projection Area of 3D Shapes 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学计算 日期 题目地址:https://leetc ...
- [LeetCode] 883. Projection Area of 3D Shapes 三维物体的投影面积
On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes. Each ...
- LeetCode 883 Projection Area of 3D Shapes 解题报告
题目要求 On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes. ...
- 【leetcode】883. Projection Area of 3D Shapes
题目如下: 解题思路:分别求出所有立方体的个数,各行的最大值之和,各列的最大值之和.三者相加即为答案. 代码如下: class Solution(object): def projectionArea ...
- [Swift]LeetCode883. 三维形体投影面积 | Projection Area of 3D Shapes
On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes. Each ...
- Leetcode883.Projection Area of 3D Shapes三维形体投影面积
在 N * N 的网格中,我们放置了一些与 x,y,z 三轴对齐的 1 * 1 * 1 立方体. 每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上. 现在,我们查 ...
随机推荐
- Fragment 的生命周期及使用方法详解
Fragment 的基础知识介绍 1.1 概述 1.1.1 特性 By hebang32624 Fragment 是 activity 的界面中的一部分或一种行为.可以把多个 Fragment 组合到 ...
- (转)Attribute在.net编程中的应用
Attribute在.net编程中的应用(一)Attribute的基本概念 经常有朋友问,Attribute是什么?它有什么用?好像没有这个东东程序也能运行.实际上在.Net中,Attribute是一 ...
- ASP.NET调用dos命令获取交换机流量
protected void btn_Cisco_Click(object sender, EventArgs e) { try { string ip = txt_ip.Value; string ...
- 很实用且容易忘记的小命令 for Linux(更新中...)
系统相关 # 系统安装日期 sudo tune2fs -l /dev/sda1 |grep create # 查看centos版本命令 rpm -q centos-release #查看centos版 ...
- codeforces 578c//Weakness and Poorness// Codeforces Round #320 (Div. 1)
题意:一个数组arr,一个数字x,要使arr-x的最大子段最小,问该最小值. 三分x,复杂度logn,内层是最大子段的模板,只能用n复杂度的.因为是绝对值最大,正负各求一次,取大的.精度卡得不得了,要 ...
- IE6不兼容hover已解决
新建一个csshover.htc文件,一下是csshover.htc内容 <public:attach event="ondocumentready" onevent=&qu ...
- datafile相关(add、rename、drop)
--case 1 add14:25:04 FPYJ(150_9)@test> alter tablespace fpyj_data02 add datafile '/oradata02/test ...
- 第5章——使用 Razor(MVC框架视图引擎)
Razor 是MVC框架视图引擎的名称. 本章提供 Razor 语法的快速教程,以使你能够识别 Razor 表达式. 本章不打算提供 Razor 的完整参考,而将其视为一个语法速成教程.在本书的后续内 ...
- OAF 清空指定控件或区域的值
CO if (pageContext.getParameter("ClearBtn") != null) { clearRegion(pageContext, webBean, & ...
- Java远程调试 java -Xdebug各参数说明
JAVA自身支持调试功能,并提供了一个简单的调试工具--JDB,类似于功能强大的GDB,JDB也是一个字符界面的 调试环境,并支持设置断点,支持线程线级的调试 JAVA的调试方法如下: 1.首先支持J ...