Hive中小表与大表关联(join)的性能分析

【转自:http://blog.sina.com.cn/s/blog_6ff05a2c01016j7n.html】

经常看到一些Hive优化的建议中说当小表与大表做关联时,把小表写在前面,这样可以使Hive的关联速度更快,提到的原因都是说因为小表可以先放到内存中,然后大表的每条记录再去内存中检测,最终完成关联查询。这样的原因看似合理,但是仔细推敲,又站不住脚跟。

多小的表算小表?如果所谓的小表在内存中放不下怎么办?我用2个只有几条记录的表做关联查询,这应该算是小表了,在查看reduce的执行日志时依然是有写磁盘的操作的。实际上reduce在接收全部map的输出后一定会有一个排序所有键值对并合并写入磁盘文件的操作。写入磁盘(spill)有可能是多次的,因此有可能会生成多个临时文件,但是最终都要合并成一个文件,即最终每一个reduce都只处理一个文件。

我做了一个实验,用1条记录的表和3亿多条记录的表做join,无论小表是放在join的前面还是join的后面,执行的时间几乎都是相同的。再去看reduce的执行日志,1条记录的表在join前或者join后两次查询的reduce日志几乎也是一摸一样的。如果按照上面的说法把join左侧的表放内存等待join右侧的表到内存中去检测,那么当3亿多条记录的表放在join左侧时,内存肯定是无法容下这么多记录的,势必要进行写磁盘的操作,那它的执行时间应该会比小表在join前时长很多才对,但事实并不是这样,也就说明了上面说到的原因并不合理。

事实上把小表放在前面做关联可以提高效率这种说法是错误的。正确的说法应该是把重复关联键少的表放在join前面做关联可以提高join的效率。

分析一下Hive对于两表关联在底层是如何实现的。因为不论多复杂的Hive查询,最终都要转化成mapreduce的JOB去执行,因此Hive对于关联的实现应该和mapreduce对于关联的实现类似。而mapreduce对于关联的实现,简单来说,是把关联键和标记是在join左边还是右边的标识位作为组合键(key),把一条记录以及标记是在join左边还是右边的标识位组合起来作为值(value)。在reduce的shuffle阶段,按照组合键的关联键进行主排序,当关联键相同时,再按照标识位进行辅助排序。而在分区段时,只用关联键中的关联键进行分区段,这样关联键相同的记录就会放在同一个value list中,同时保证了join左边的表的记录在value list的前面,而join右边的表的记录在value list的后面。

例如A join B ON (A.id = b.id) ,假设A表和B表都有1条id = 3的记录,那么A表这条记录的组合键是(3,0),B表这条记录的组合键是(3,1)。排序时可以保证A表的记录在B表的记录的前面。而在reduce做处理时,把id=3的放在同一个value list中,形成 key = 3,value list = [A表id=3的记录,B表id=3的记录]

接下来我们再来看当两个表做关联时reduce做了什么。Reduce会一起处理id相同的所有记录。我们把value list用数组来表示。

1)   Reduce先读取第一条记录v[0],如果发现v[0]是B表的记录,那说明没有A表的记录,最终不会关联输出,因此不用再继续处理这个id了,读取v[0]用了1次读取操作。

2)   如果发现v[0]到v[length-1]全部是A表的记录,那说明没有B表的记录,同样最终不会关联输出,但是这里注意,已经对value做了length次的读取操作。

3)   例如A表id=3有1条记录,B表id=3有10条记录。首先读取v[0]发现是A表的记录,用了1次读取操作。然后再读取v[1]发现是B表的操作,这时v[0]和v[1]可以直接关联输出了,累计用了2次操作。这时候reduce已经知道从v[1]开始后面都是B 表的记录了,因此可以直接用v[0]依次和v[2],v[3]……v[10]做关联操作并输出,累计用了11次操作。

4)   换过来,假设A表id=3有10条记录,B表id=3有1条记录。首先读取v[0]发现是A表的记录,用了1次读取操作。然后再读取v[1]发现依然是A表的记录,累计用了2次读取操作。以此类推,读取v[9]时发现还是A表的记录,累计用了10次读取操作。然后读取最后1条记录v[10]发现是B表的记录,可以将v[0]和v[10]进行关联输出,累计用了11次操作。接下来可以直接把v[1]~v[9]分别与v[10]进行关联输出,累计用了20次操作。

5)   再复杂一点,假设A表id=3有2条记录,B表id=3有5条记录。首先读取v[0]发现是A表的记录,用了1次读取操作。然后再读取v[1]发现依然是A表的记录,累计用了2次读取操作。然后读取v[2]发现是B表的记录,此时v[0]和v[2]可以直接关联输出,累计用了3次操作。接下来v[0]可以依次和v[3]~v[6]进行关联输出,累计用了7次操作。接下来v[1]再依次和v[2]~v[6]进行关联输出,累计用了12次操作。

6)   把5的例子调过来,假设A表id=3有5条记录,B表id=3有2条记录。先读取v[0]发现是A表的记录,用了1次读取操作。然后再读取v[1]发现依然是A表的记录,累计用了2次读取操作。以此类推,读取到v[4]发现依然是A表的记录,累计用了5次读取操作。接下来读取v[5],发现是B表的记录,此时v[0]和v[5]可以直接关联输出,累计用了6次操作。然后v[0]和v[6]进行关联输出,累计用了7次操作。然后v[1]分别与v[5]、v[6]关联输出,累计用了9次操作。V[2] 分别与v[5]、v[6]关联输出,累计用了11次操作。以此类推,最后v[4] 分别与v[5]、v[6]关联输出,累计用了15次操作。

7)   额外提一下,当reduce检测A表的记录时,还要记录A表同一个key的记录的条数,当发现同一个key的记录个数超过hive.skewjoin.key的值(默认为1000000)时,会在reduce的日志中打印出该key,并标记为倾斜的关联键。

最终得出的结论是:写在关联左侧的表每有1条重复的关联键时底层就会多1次运算处理。

假设A表有一千万个id,平均每个id有3条重复值,那么把A表放在前面做关联就会多做三千万次的运算处理,这时候谁写在前谁写在后就看出性能的差别来了。

Hive中小表与大表关联(join)的性能分析【转】的更多相关文章

  1. 了解MySQL联表查询中的驱动表,优化查询,以小表驱动大表

    一.为什么要用小表驱动大表 1.驱动表的定义 当进行多表连接查询时, [驱动表] 的定义为: 1)指定了联接条件时,满足查询条件的记录行数少的表为[驱动表] 2)未指定联接条件时,行数少的表为[驱动表 ...

  2. 3.mysql小表驱动大表的4种表连接算法

    小表驱动大表 1.概念 驱动表的概念是指多表关联查询时,第一个被处理的表,使用此表的记录去关联其他表.驱动表的确定很关键,会直接影响多表连接的关联顺序,也决定了后续关联时的查询性能. 2.原则 驱动表 ...

  3. 小表驱动大表, 兼论exists和in

    给出两个表,A和B,A和B表的数据量, 当A小于B时,用exists select * from A where exists (select * from B where A.id=B.id) ex ...

  4. 6.2 小表驱动大表(exists的应用)

    1. 优化原则:小表驱动大表,即小数据集驱动大数据集. select * from A where id in (select id from B) 等价于: for select id from B ...

  5. Mysql优化原则_小表驱动大表IN和EXISTS的合理利用

    //假设一个for循环 ; $i < ; $i++) { ; $i < ; $j++) { } } ; $i < ; $i++) { ; $i < ; $j++) { } } ...

  6. 查询优化--小表驱动大表(In,Exists区别)

    Mysql 系列文章主页 =============== 本文将以真实例子来讲解小表驱动大表(In,Exists区别) 1 准备数据 1.1 创建表.函数.存储过程 参照  这篇(调用函数和存储过程批 ...

  7. MySQL高级知识(十六)——小表驱动大表

    前言:本来小表驱动大表的知识应该在前面就讲解的,但是由于之前并没有学习数据批量插入,因此将其放在这里.在查询的优化中永远小表驱动大表. 1.为什么要小表驱动大表呢 类似循环嵌套 for(int i=5 ...

  8. MySql 小表驱动大表

    在了解之前要先了解对应语法 in 与 exist. IN: select * from A where A.id in (select B.id from B) in后的括号的表达式结果要求之输出一列 ...

  9. [NewLife.XCode]扩展属性(替代多表关联Join提升性能)

    NewLife.XCode是一个有10多年历史的开源数据中间件,支持nfx/netstandard,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量结合示 ...

随机推荐

  1. 使用tensorflow-serving部署tensorflow模型

    使用docker部署模型的好处在于,避免了与繁琐的环境配置打交道.使用docker,不需要手动安装Python,更不需要安装numpy.tensorflow各种包,直接一个docker就包含了全部.d ...

  2. 转载:librdkafka问题总结

    使用librdkafka过程中,遇到的一些问题,解决办法! 暂时先转载:form:http://blog.csdn.net/lybingo/article/details/52808192?locat ...

  3. 九款命令行工具助力Linux环境下的数据分析

    对于大多数熟悉了图形工作环境的朋友来说,电子表格工具无疑是第一选项.但命令行工具同样能够更快更高效地解决问题——且只须稍微学习即可上手. 大部分此类工具冻严格局限于Linux,而多数可同样运行在Uni ...

  4. Tensorflow CNN入门

    一.概论 以图像识别来举例,比如我们让计算机如何识别一张猫的图片识别出猫呢? 老式的计算机视觉是如何做的呢? 比如OpenCV: 首先理解很多算法,比如如何检测线条(Edge Detection) 如 ...

  5. 【Algorithm】自底向上的归并排序

    一. 算法描述 自底向上的归并排序:归并排序主要是完成将若干个有序子序列合并成一个完整的有序子序列:自底向上的排序是归并排序的一种实现方式,将一个无序的N长数组切个成N个有序子序列,然后再两两合并,然 ...

  6. mysql单机多实例

    在数据库服务器上,可以架构多个Mysql服务器,进行单机多实例的读写分离: 可以通过mysqld_multi来进行多实例的管理,mysqld_multi是用perl写的脚本,原理是通过mysql_ad ...

  7. C# 获取接口数据(xml格式)转为json格式

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Net ...

  8. [转]What are mode and status columns under gp_segment_configuration table

    February 16, 2017 10:39 Goal In this article we will try to understand and answer to the below two q ...

  9. php分享二十三:字符编码

    1:ASCII 在计算机中,所有的数据在存储和运算时都要使用二进制数表示(因为计算机用高电平和低电平分别表示1和0),例如,像a.b.c.d这样的52个字母(包括大写).以及0.1等数字还有一些常用的 ...

  10. java正则表达式:验证字符串数字

    正则表达式:^([0-9]+)$ -> ^:匹配以0-9开头,[0-9]:匹配0-9数字,+:匹配至少一个数字,$:匹配以数字结尾 /** *正则表达式:验证字符串数字 *两种方式: *1.pa ...