luoguP1004 方格取数(四维DP)
题目链接:https://www.luogu.org/problemnew/show/P1004
思路:
这道题是四维DP的模板题,与luoguP1006传纸条基本相似,用f[i][j][k][l]表示第一个人走到(i,j),第二个人走到(k,l)时两个人取得数的和的最大值。显然复杂度最多为9×9×9×9=6561,所以这个方法可行。
状态转移方程为:f[i][j][k][l]=max(f[i][j-1][k][l-1],max(f[i][j-1][k-1][l],max(f[i-1][j][k][l-1],f[i-1][j][k-1][l])))+a[i][j]+a[k][l];
其中需要注意(i,j)与(k,l)重合的情况。
AC代码如下:
#include<cstdio>
#include<algorithm>
using namespace std; int n;
int a[][],f[][][][]; int main(){
scanf("%d",&n);
int r,c,val;
while(scanf("%d%d%d",&r,&c,&val)!=EOF&&r)
a[r][c]=val;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=n;k++)
for(int l=;l<=n;l++){
f[i][j][k][l]=max(f[i][j-][k][l-],max(f[i][j-][k-][l],max(f[i-][j][k][l-],f[i-][j][k-][l])))+a[i][j]+a[k][l];
if(i==k&&j==l)
f[i][j][k][l]-=a[i][j];
}
printf("%d\n",f[n][n][n][n]);
return ;
}
luoguP1004 方格取数(四维DP)的更多相关文章
- 洛谷P1004 方格取数-四维DP
题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...
- 方格取数(dp)
方格取数 时间限制: 1 Sec 内存限制: 128 MB提交: 9 解决: 4[提交][状态][讨论版][命题人:quanxing] 题目描述 设有N×N的方格图,我们在其中的某些方格中填入正整 ...
- P1004 方格取数[棋盘dp]
题目来源:洛谷 题目描述 设有N×N的方格图(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 ...
- P1004 方格取数(四维动态规划)
题目描述 设有N \times NN×N的方格图(N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A 0 0 0 0 0 0 0 0 ...
- 洛谷 - P1004 - 方格取数 - 简单dp
https://www.luogu.org/problemnew/show/P1004 这道题分类到简单dp但是感觉一点都不简单……这种做两次的dp真的不是很懂怎么写.假如是贪心做两次,感觉又不能证明 ...
- hihocoder #1617 : 方格取数(dp)
题目链接:http://hihocoder.com/problemset/problem/1617 题解:一道递推的dp题.这题显然可以考虑两个人同时从起点出发这样就不会重复了设dp[step][i] ...
- 【noi 2.6_8786】方格取数(DP)
题意:N*N的方格图每格有一个数值,要求从左上角每步往右或往下走到右下角,问走2次的最大和. 解法:走一次的很好想,而走2次,不可误以为先找到最大和的路,再找剩下的最大和的路就是正解.而应该认清动态规 ...
- P1004 方格取数(四维dp)
P1004 方格取数 思路如下 这题是看洛谷大佬的思路才写出来的,所以我会把大佬的思路展示如下: 1⃣️:我们可以找到一个叫思维dp的东西,dp[i][j][k][l],其中前两维表示一个人从原点出发 ...
- 四维dp,传纸条,方格取数
四维dp例题 四维dp便是维护4个状态的dp方式 拿题来说吧. 1. 洛谷P1004 方格取数 #include<iostream> #include<cstdio> usin ...
随机推荐
- java操作Excel之POI(2)
一.设置单元格对齐方式: /** * 设置单元格对齐方式 */ public static void main(String[] args) throws Exception { Workbook w ...
- linux修改文件系统挂载的目录
比如想把已经挂载在home目录上的硬盘挂载到data目录上, 如下操作 #df -h(查看分区情况及数据盘名称) # mkdir /data(如果没有data目录就创建,否则此步跳过) # umoun ...
- Vcenter 和ESXi License过期解决办法
Vcenter License过期解决办法 用client连接vcenter: KEY必须用vCenter Server 5 Standard序列号如果使用使用的“vCenter Server 5 ...
- [UE4]添加射击的准心
其实就是创建一个UI Widget,在UI Widget中添加一个准心图片(png)格式,准心图片设置为屏幕居中对齐,然后在自定义的GameMode中把这个UI Widget添加到视图中.
- 成为Java顶尖程序员 ,看这11本书就够了
以下是我推荐给Java开发者们的一些值得一看的好书.但是这些书里面并没有Java基础.Java教程之类的书,不是我不推荐,而是离我自己学习 Java基础技术也过去好几年了,我学习的时候看的什么也忘了, ...
- 最近比赛中遇到的几道dp题
1.2015 icpc 长春-H-Partial Tree(据说是完全背包,但我觉得不像) 一.题意 给定$n$个点,每一个点$i$的权值为关于度数$d_i$的函数$f(d_i),$让你构建一棵树,使 ...
- sql server不要插入大数据,开销太大
sql server或者说关系型数据库中不要做一个字段存储大数据量的设计,比如要插入3000w条数据,然后每条数据中有一个文章字段,这个字段每条大概都需要存储几m的数据,那么算下来这个表就得有几百个G ...
- CentOS 7.4 安装部署 iRedMail 邮件服务器
在公司部署了一套开源的邮件网关Scrollout F1用来测试,由于Scrollout F1需要使用IMAP协议连接到邮件服务器上的隔离邮箱,抓取GOOD和BAD文件夹里的邮件进行贝叶斯学习,但公司的 ...
- Python正则总结
re总结 限定符(就是控制重复次数) ? 匹配前面的子表达式零次或一次.例如,"do(es)?" 可以匹配 "do" . "does" 中的 ...
- windows脚本测试
一. C:\Users\smc892h>systeminfo | findstr 物理内存物理内存总量: 12,167 MB可用的物理内存: 2,103 MB 二.截取字段 参考网站 ...