PCA,SVD
https://www.zhihu.com/question/34143886/answer/196294308
奇异值分解的揭秘(二):降维与奇异向量的意义
奇异值分解的揭秘(一):矩阵的奇异值分解过程
浅谈张量分解(三):如何对稀疏矩阵进行奇异值分解?
如何直观地理解「协方差矩阵」?
PCA(主成分分析)
奇异值分解(SVD)
奇异值的物理意义是什么?
https://www.zhihu.com/question/22237507/answer/53804902
https://zhuanlan.zhihu.com/p/21580949
http://colah.github.io/posts/2014-10-Visualizing-MNIST/
https://www.matongxue.com/madocs/491.html
https://arxiv.org/pdf/1404.1100.pdf
https://stats.stackexchange.com/questions/134282/relationship-between-svd-and-pca-how-to-use-svd-to-perform-pca
http://www.ams.org/publicoutreach/feature-column/fcarc-svd
What is the intuitive relationship between SVD and PCA -- a very popular and very similar thread on math.SE.
Why PCA of data by means of SVD of the data? -- a discussion of what are the benefits of performing PCA via SVD [short answer: numerical stability].
PCA and Correspondence analysis in their relation to Biplot -- PCA in the context of some congeneric techniques, all based on SVD.
Is there any advantage of SVD over PCA? -- a question asking if there any benefits in using SVD instead of PCA [short answer: ill-posed question].
Making sense of principal component analysis, eigenvectors & eigenvalues -- my answer giving a non-technical explanation of PCA. To draw attention, I reproduce one figure here:
http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/
https://zh.wikipedia.org/wiki/%E5%8D%8F%E6%96%B9%E5%B7%AE%E7%9F%A9%E9%98%B5
http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/
http://www.visiondummy.com/2014/05/feature-extraction-using-pca/
http://www.visiondummy.com/2014/03/divide-variance-n-1/
http://www.visiondummy.com/2014/03/eigenvalues-eigenvectors/
http://www.visiondummy.com/2014/03/eigenvalues-eigenvectors/
http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/
http://pinkyjie.com/2010/08/31/covariance/
https://en.wikipedia.org/wiki/Variance
https://deeplearning4j.org/eigenvector#a-beginners-guide-to-eigenvectors-pca-covariance-and-entropy
http://blog.csdn.net/watkinsong/article/details/8234766
http://blog.csdn.net/watkinsong/article/details/38536463
https://stats.stackexchange.com/questions/10251/what-is-the-objective-function-of-pca/10256#10256
主成分分析推导
https://www.cnblogs.com/Merodach/p/9033734.html
关于PCA的形象理解
https://zhuanlan.zhihu.com/p/29993872
http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html
PCA (主成分分析)详解 (写给初学者) 结合matlab
https://my.oschina.net/gujianhan/blog/225241
如何理解矩阵特征值?
https://www.zhihu.com/question/21874816/answer/181864044
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用
主成份分析(PCA)最详细和全面的诠释
PCA,SVD的更多相关文章
- PCA, SVD以及代码示例
本文是对PCA和SVD学习的整理笔记,为了避免很多重复内容的工作,我会在介绍概念的时候引用其他童鞋的工作和内容,具体来源我会标记在参考资料中. 一.PCA (Principle component a ...
- 降维【PCA & SVD】
PCA(principle component analysis)主成分分析 理论依据 最大方差理论 最小平方误差理论 一.最大方差理论(白面机器学习) 对一个矩阵进行降维,我们希望降维之后的每一维数 ...
- matlab练习程序(PCA<SVD>)
clear all;close all;clc;img1=imread('Corner.png');img2=imread('Corner1.png');img3=imread('Corner2.pn ...
- # 机器学习算法总结-第五天(降维算法PCA/SVD)
- What is an intuitive explanation of the relation between PCA and SVD?
What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...
- [机器学习 ]PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做
PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做 今天自己实现PCA,从网上看文章的时候,发现有的文章没有搞清楚把SVD(奇异值分解)实现和EVD(特征值分解) ...
- 机器学习SVD笔记
机器学习中SVD总结 矩阵分解的方法 特征值分解. PCA(Principal Component Analysis)分解,作用:降维.压缩. SVD(Singular Value Decomposi ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- PCV 学习笔记-ch1 主成分分析实现
模块名称:pca.py PCA原理与紧致技巧原理待补... #-*-coding:UTF-8-*- ''' Created on 2015年3月2日 @author: Ayumi Phoenix ch ...
随机推荐
- centos nginx+php+mysql 安装libiconv不成功
wget http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.13.1.tar.gz tar -zxvf libiconv-1.13.1.tar.gzcd l ...
- Oracle数据库查看SID和service_name
怎样查看Oracle的数据库名称sid用sysdba身份登录 比如 conn / as sysdba 匿名管理员登陆执行 select name form V$database; 或是执行selec ...
- Linux 中的网络数据包捕获
Linux 中的网络数据包捕获 Ashish Chaurasia, 工程师 简介: 本教程介绍了捕获和操纵数据包的不同机制.安全应用程序,如 VPN.防火墙和嗅探器,以及网络应用程序,如路由程序,都依 ...
- 基于RESTful API 怎么设计用户权限控制?
前言 有人说,每个人都是平等的:也有人说,人生来就是不平等的:在人类社会中,并没有绝对的公平,一件事,并不是所有人都能去做:一样物,并不是所有人都能够拥有.每个人都有自己的角色,每种角色都有对某种资源 ...
- Emacs的sr-speedbar中使能Go-mode
sr-speedbar使用了speedbar的文件检索功能,但是Emacs24自带的speedbar不支持go文件预览,下面是在speedbar中使能go-mode的一种方法: 1,按F10启动菜单栏 ...
- Android开发环境——Eclipse ADT相关内容汇总
Android开发环境将分为SDK相关内容.Eclipse ADT相关内容.模拟器AVD相关内容.调试器DDMS相关内容.日志LogCat相关内容.连接驱动ADB相关内容.内存泄露检测工具MAT相关 ...
- apache配置中ProxyPassReverse指令的含义
apache中的mod_proxy模块主要作用就是进行url的转发,即具有代理的功能.应用此功能,可以很方便的实现同tomcat等应用服务器的整合,甚者可以很方便的实现web集群的功能. 例如使用ap ...
- 【HTML】前端性能优化之CDN和WPO的比较
CDN通过将资源存储在更接近用户的位置,缩短到服务器的往返行程,加快页面加载时间来解决性能问题.WPO解决方案,如Radware的FastView,则在前端进行性能提升处理,使页面更有效地呈现在浏览器 ...
- 使用Nexus搭建Maven服务器详细配置【转】
为什么要搭建nexus私服,原因很简单,有些公司都不提供外网给项目组人员,因此就不能使用maven访问远程的仓库地址,所以很有必要在局域网里找一台有外网权限的机器,搭建nexus私服,然后开发人员连到 ...
- iOS中的copy
原文:http://www.jianshu.com/p/5254f1277dba 内存的栈区 : 由编译器自动分配释放, 存放函数的参数值, 局部变量的值等. 其操作方式类似于数据结构中的栈. 内存的 ...