PCA,SVD
https://www.zhihu.com/question/34143886/answer/196294308
奇异值分解的揭秘(二):降维与奇异向量的意义
奇异值分解的揭秘(一):矩阵的奇异值分解过程
浅谈张量分解(三):如何对稀疏矩阵进行奇异值分解?
如何直观地理解「协方差矩阵」?
PCA(主成分分析)
奇异值分解(SVD)
奇异值的物理意义是什么?
https://www.zhihu.com/question/22237507/answer/53804902
https://zhuanlan.zhihu.com/p/21580949
http://colah.github.io/posts/2014-10-Visualizing-MNIST/
https://www.matongxue.com/madocs/491.html
https://arxiv.org/pdf/1404.1100.pdf
https://stats.stackexchange.com/questions/134282/relationship-between-svd-and-pca-how-to-use-svd-to-perform-pca
http://www.ams.org/publicoutreach/feature-column/fcarc-svd
What is the intuitive relationship between SVD and PCA -- a very popular and very similar thread on math.SE.
Why PCA of data by means of SVD of the data? -- a discussion of what are the benefits of performing PCA via SVD [short answer: numerical stability].
PCA and Correspondence analysis in their relation to Biplot -- PCA in the context of some congeneric techniques, all based on SVD.
Is there any advantage of SVD over PCA? -- a question asking if there any benefits in using SVD instead of PCA [short answer: ill-posed question].
Making sense of principal component analysis, eigenvectors & eigenvalues -- my answer giving a non-technical explanation of PCA. To draw attention, I reproduce one figure here:
http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/
https://zh.wikipedia.org/wiki/%E5%8D%8F%E6%96%B9%E5%B7%AE%E7%9F%A9%E9%98%B5
http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/
http://www.visiondummy.com/2014/05/feature-extraction-using-pca/
http://www.visiondummy.com/2014/03/divide-variance-n-1/
http://www.visiondummy.com/2014/03/eigenvalues-eigenvectors/
http://www.visiondummy.com/2014/03/eigenvalues-eigenvectors/
http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/
http://pinkyjie.com/2010/08/31/covariance/
https://en.wikipedia.org/wiki/Variance
https://deeplearning4j.org/eigenvector#a-beginners-guide-to-eigenvectors-pca-covariance-and-entropy
http://blog.csdn.net/watkinsong/article/details/8234766
http://blog.csdn.net/watkinsong/article/details/38536463
https://stats.stackexchange.com/questions/10251/what-is-the-objective-function-of-pca/10256#10256
主成分分析推导
https://www.cnblogs.com/Merodach/p/9033734.html
关于PCA的形象理解
https://zhuanlan.zhihu.com/p/29993872
http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html
PCA (主成分分析)详解 (写给初学者) 结合matlab
https://my.oschina.net/gujianhan/blog/225241
如何理解矩阵特征值?
https://www.zhihu.com/question/21874816/answer/181864044
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用
主成份分析(PCA)最详细和全面的诠释
PCA,SVD的更多相关文章
- PCA, SVD以及代码示例
本文是对PCA和SVD学习的整理笔记,为了避免很多重复内容的工作,我会在介绍概念的时候引用其他童鞋的工作和内容,具体来源我会标记在参考资料中. 一.PCA (Principle component a ...
- 降维【PCA & SVD】
PCA(principle component analysis)主成分分析 理论依据 最大方差理论 最小平方误差理论 一.最大方差理论(白面机器学习) 对一个矩阵进行降维,我们希望降维之后的每一维数 ...
- matlab练习程序(PCA<SVD>)
clear all;close all;clc;img1=imread('Corner.png');img2=imread('Corner1.png');img3=imread('Corner2.pn ...
- # 机器学习算法总结-第五天(降维算法PCA/SVD)
- What is an intuitive explanation of the relation between PCA and SVD?
What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...
- [机器学习 ]PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做
PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做 今天自己实现PCA,从网上看文章的时候,发现有的文章没有搞清楚把SVD(奇异值分解)实现和EVD(特征值分解) ...
- 机器学习SVD笔记
机器学习中SVD总结 矩阵分解的方法 特征值分解. PCA(Principal Component Analysis)分解,作用:降维.压缩. SVD(Singular Value Decomposi ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- PCV 学习笔记-ch1 主成分分析实现
模块名称:pca.py PCA原理与紧致技巧原理待补... #-*-coding:UTF-8-*- ''' Created on 2015年3月2日 @author: Ayumi Phoenix ch ...
随机推荐
- xml中“ < > ”转义为“ < > ”问题处理
曾经也碰到过类似问题,解决方法是在发送或者解析报文前执行上面的方法将内容转义一下,现在我用dom4j组装如下的报文(报文体中内容传输时加密处理),大致介绍一下上面方法的使用,具体看代码. import ...
- 工作log
整理电脑, 发现这么个文档, 留个纪念... 1. 2016-11-17 ================================ 3.采集任务编制页面,表格表头点击实现升序/降序排列 5.s ...
- easyui的日期控件
1.日期控件只能点击控件进行选择, 不可手动编辑input框中的日期内容 editable="false" 2.日期控件既不可点击, 也不可手动编辑input框中的日期内容 dis ...
- hihocoder234周 计算不包含黑点的矩形个数
题目链接 问题描述 一个棋盘有n条横线,m条竖线,上面有k个黑点,问有多少个不包含黑点的矩形. 数据范围: n和m最大为1000,k最大为10 方法一:动态规划 复杂度n*m*k. import ja ...
- ios实例开发精品文章推荐(8.13)
提示用户对产品进行评价 http://www.apkbus.com/android-137752-1-1.html设置UILabel和UITextField的Insets http://www.apk ...
- 【RS】RankMBPR:Rank-Aware Mutual Bayesian Personalized Ranking for Item Recommendation - RankMBPR:基于排序感知的相互贝叶斯个性化排序的项目推荐
[论文标题]RankMBPR:Rank-Aware Mutual Bayesian Personalized Ranking for Item Recommendation ( WAIM 2016: ...
- java.lang.NullPointerException 空指针异常问题
java.lang.NullPointerException 空指针异常问题: 空指针异常抛出的异常信息一般是: Exception in thread "main" java.l ...
- iOS 持续集成
iOS 持续集成系列 - 开篇 前言 iOS 开发在经过这几年的野蛮生长之后,慢慢地趋于稳定.无论开发语言是 Objective-C 还是 Swift,工程类型是 Hybird 还是原生,开发思想是 ...
- SpringBoot项目eclipse运行正常maven install打包启动后报错ClassNotFoundException
parent的pom.xml <groupId>cn.licoy</groupId> <artifactId>parent</artifactId> & ...
- .Net Core ORM选择之路,哪个才适合你 通用查询类封装之Mongodb篇 Snowflake(雪花算法)的JavaScript实现 【开发记录】如何在B/S项目中使用中国天气的实时天气功能 【开发记录】微信小游戏开发入门——俄罗斯方块
.Net Core ORM选择之路,哪个才适合你 因为老板的一句话公司项目需要迁移到.Net Core ,但是以前同事用的ORM不支持.Net Core 开发过程也遇到了各种坑,插入条数多了也特别 ...