Ⅰ、MVCC介绍

consistent non-locking read,通过行多版本控制的方式读取当前执行时间点的记录

默认情况下innodb select没有任何锁,读到的记录在更新就通过undo读之前版本,serializable时候读会被阻塞,因为它默认加一个lock in share mode

--->like oracle

原理

undo && read_view

通过read_view判断一条记录是否可见,不可见(在更新被锁住)就通过undo回滚到之前版本,之前的版本再读trx_id,还不可见再回滚,rc只要回滚一个版本,rr可能要回滚很多版本,最大trx_id是持久化的,保存在共享表空间中

其实理解下就是事务在不在活跃列表中,在的话这个事务对记录做的动作就不可见需要找记录的前镜像(rc总是读最新的非锁定版本,rr总是读最老的非锁定版本,后续会有专门的文章说明)

举个栗子

session1:
(root@localhost) [test]> select * from t;
+------+
| a |
+------+
| 1 |
+------+
1 row in set (0.00 sec) (root@localhost) [test]> begin;
Query OK, 0 rows affected (0.00 sec) (root@localhost) [test]> update t set a = a + 1 where a = 1;
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0 (root@localhost) [test]> select * from t;
+------+
| a |
+------+
| 2 |
+------+
1 row in set (0.00 sec) session2:
(root@localhost) [test]> begin;
Query OK, 0 rows affected (0.00 sec) (root@localhost) [test]> select * from t;
+------+
| a |
+------+
| 1 |
+------+
1 row in set (0.00 sec)

第一个会话开启事务更新记录,不提交,此时记录是被锁住的

新开一个会话去select 这条记录,并不会因为有锁而阻塞,读到的是原来的记录

此时commit之后,之前版本的undo是不能被马上回收的,因为其他线程可能还在引用之前版本的undo,真正的回收undo是purge线程做的

Ⅱ、purge线程

2.1 purge介绍

purge的作用是删除undo,真正删除一条记录(完成update和delete)

delete from table where pk=1;

在page中只是标记为删除,page上并没有真正的删除
相关参数:innodb_purge_threads 默认是1,5.7中设大一点,4或者8,都是ssd性能比较好
  • 5.5之前所有的purge操作都是master thread做的

    默认只有一个purge thread

    innodb_purge_threads={0|1}

  • 5.6

    N purge thread

    innodb_purge_threads={4}

2.2 purge具体过程

1024个槽------1024个undo回滚段,每个槽对应不同的undo日志

一旦事务提交,undo就放到hitory list中

tips:

因为记录不是有序的,所以purge操作需要大量离散读取操作

2.3 线上常见问题

undo不断增大,不能有效回收,导致系统空间不断增大,

最主要的原因有两个:

  • 索引没有添加

    检查slow log

  • 存在大事务

    拆大为小

其实就一点,一个事务执行时间很长,那对应的undo就不能回收,至少要commit完成后才能回收

另外回滚比提交慢非常多,commit很快,rollback需要的时间就是事务执行的时间,逻辑回滚

tips:

目前MySQL已经支持在线回收undo,详见阿里数据库内核月报

Ⅲ、分布式事务

之前我们谈到binlog和redo的一致性是通过一个内部的xa事务保证的,这里简单聊下外部的分布式事务

3.1 看下简单语法

(root@localhost) [test]> xa start 'a';    -- 开启一个分布式事务
Query OK, 0 rows affected (0.00 sec) (root@localhost) [test]> insert into t values(2000);
Query OK, 1 row affected (0.09 sec) (root@localhost) [test]> insert into t values(3000);
Query OK, 1 row affected (0.00 sec) (root@localhost) [test]> xa end 'a'; -- 结束
Query OK, 0 rows affected (0.00 sec) (root@localhost) [test]> xa prepare 'a'; -- 写prepare
Query OK, 0 rows affected (0.03 sec) (root@localhost) [test]> xa recover; -- 看一眼,有一个分布式事务
+----------+--------------+--------------+------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+------+
| 1 | 1 | 0 | a |
+----------+--------------+--------------+------+
1 row in set (0.00 sec) (root@localhost) [test]> xa rollback 'a'; -- 回滚
Query OK, 0 rows affected (0.01 sec) (root@localhost) [test]> xa recover; -- 再看下,没了
Empty set (0.00 sec)

这是再单实例上模拟的,意义不大

真正应用程序中两个实例做分布式事务,需要两边的prepare都成功才能最终提交

3.2 分布式事务的不完美

  • client退出导致prepare成功事务丢失
  • MySQL Server宕机导致binlog丢失
  • 外部XA prepare成功不写日志

Ⅳ、事务编程

4.1 不好的事务习惯

  • 在循环中提交事务,(fsync次数太多)
  • 使用自动提交
  • 使用自动回滚
create procedure load1(count int unsigned)
begin
declare s int unsigned default 1;
declare c char(80) default repeat('a',80);
while s <= count do
insert into t1 select NULL,c;
set s = s+1;
end while;
end call load1(1000)

上面这个存储过程的调用,auto commit导致了insert会处罚一千次fsync

正确姿势:

begin;
call load1(1000)
commit;
  • 错误的那种如果中间失败回滚都回不了,做不到原子性
  • 将事务写到存储过程里面也不好,出错了就不好弄,不能自动回滚,所以存储过程只写逻辑,事务控制应用程序来做

4.2 大事务

事务拆大为小,原因就是binlog在搞鬼,其实不一定是大事务,大的操作都要拆吧

计算利息,拆了批量执行

update account
set account_total = account_total + (1 + interest_rate)

为什么要拆?老生常谈的、

  • 写binlog成本大,导致主从延迟
  • 避免过大的undo

题外话:

binlog是有点讨厌不像oracle用redo,历史原因,不好说

也有好处,做大数据平台集成非常简单,把MySQL的的数据实时推到大数据平台上太简单,github上一搜一大把项目直接用

MVCC&PURGE&分布式事务的更多相关文章

  1. MVCC/分布式事务简介

    之前我们学习了RocksDB,但这还只是一个最基础的存储引擎.如果想把它在生产环境中用起来,还需要解决很多问题: 如何从单机扩展到分布式? 如何实现事务,并对事务进行并发控制? 用户接口能不能高级一点 ...

  2. 分布式事务(一)两阶段提交及JTA

    原创文章,同步发自作者个人博客 http://www.jasongj.com/big_data/two_phase_commit/ 分布式事务 分布式事务简介 分布式事务是指会涉及到操作多个数据库(或 ...

  3. Google关于Spanner的论文中分布式事务的实现

    Google关于Spanner的论文中分布式事务的实现 Google在Spanner相关的论文中详细的解释了Percolator分布式事务的实现方式, 而且用简洁的伪代码示例怎么实现分布式事务; Pe ...

  4. 分布式事务实现-Percolator

    Google为了解决网页索引的增量处理,以及维护数据表和索引表的一致性问题,基于BigTable实现了一个支持分布式事务的存储系统.这里重点讨论这个系统的分布式事务实现,不讨论percolator中为 ...

  5. DTCC 2019 | 深度解码阿里数据库实现 数据库内核——基于HLC的分布式事务实现深度剖析

    摘要:分布式事务是分布式数据库最难攻克的技术之一,分布式事务为分布式数据库提供一致性数据访问的支持,保证全局读写原子性和隔离性,提供一体化分布式数据库的用户体验.本文主要分享分布式数据库中的时钟解决方 ...

  6. 巨杉数据库SequoiaDB】巨杉Tech | SequoiaDB 分布式事务实现原理简介

    1 分布式事务背景 随着分布式数据库技术的发展越来越成熟,业内对于分布式数据库的要求也由曾经只用满足解决海量数据的存储和读取这类边缘业务向核心交易业务转变.分布式数据库如果要满足核心账务类交易需求,则 ...

  7. 数据库内核——基于HLC的分布式事务实现深度剖析

    DTCC 2019 | 深度解码阿里数据库实现 数据库内核--基于HLC的分布式事务实现深度剖析-阿里云开发者社区 https://developer.aliyun.com/article/70355 ...

  8. 硬核!2w 字长文爆肝分布式事务知识点!!

    前言 分布式事务,是分布式架构中一个绕不开的话题,而什么是分布式事务?为什么要使用分布式事务?分布式事务有哪些实现方案?更是面试时面试官特别喜欢的一个分布式三连炮!同时用XMind画了一张导图记录分布 ...

  9. MySQL的本地事务、全局事务、分布式事务

    本地事务 事务特性:ACID,其中C一致性是目的,AID是手段. 实现隔离性 写锁:数据加了写锁,其他事务不能写也不能读. 读锁:数据加了读锁,其他事务不能加写锁可以加读锁,可以允许自己升级为写锁. ...

随机推荐

  1. 处理器 趣事 CPU/GPU/TPU/DPU/BPU

    有消息称,阿里巴巴达摩院正在研发一款神经网络芯片——Ali-NPU,主要运用于图像视频分析.机器学习等AI推理计算.按照设计,这款芯片性能将是目前市面上主流CPU.GPU架构AI芯片的10倍,而制造成 ...

  2. 在IIS7上导出所有应用程序池的方法批量域名绑定(网站绑定)

    资料来源: http://www.2cto.com/os/201410/341882.html 一点经验:导出配置文件后,建议打开看看,如果有需要调整的需要做修改. 在IIS7+上导出所有应用程序池的 ...

  3. CentOS 6.5 x64下安装宝塔面板、阿里安骑士

    一.安装宝塔: CentOS下命令(https://www.bt.cn/bbs/thread-1186-1-1.html) yum install -y wget && wget -O ...

  4. SSL SSH

    http://www.91ri.org/13679.html https://www.linux.com/blog/how-install-ssl-certificate-linux-server h ...

  5. mysql索引知识简单记录

    简介 今天记录下索引基础知识  1.mysql单表最多支持多少个索引,索引总长度为多少? 索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型. ...

  6. MySQL 加锁处理分析<转>

    1    背景    1 1.1    MVCC:Snapshot Read vs Current Read    2 1.2    Cluster Index:聚簇索引    3 1.3    2P ...

  7. dma子系统 dmac

    DMA子是CPU中实现数据传输的一种方式,CPU配置好DMA控制器之后发起数据传输,CPU本身不参与数据传输的动作中去. DMA种类: 分为外设DMA和DMA控制器.其中外设DMA实现的为特定的外设与 ...

  8. 空的OnGUI也会有gc

    一个空场景,添加如下代码: using System.Collections; using System.Collections.Generic; using UnityEngine; public ...

  9. hdfs 安全模式介绍

    1. hdfs在启动的时候现将映像载入内存,并执行edits中的各项操作,一旦在内存中建立元数据的映像,则闯进啊一个新的fsimage文件和空的编辑日志.此时namenode开始监听datanode请 ...

  10. 运行yarn的时候提示 node不是内部或外部命令

    背景:准备react native 搭建,装完nodejs  npm 重启cmd,再次管理员运行即可!