秦九韶算法:多项式$a_0+a_1x+a_2x^2+...+a_nx^n=a_0+x(a_1+x(a_2+...+(xa_n))..)$,这样对于一个x,可以在O(n)求出结果

为了避免高精度,我们同时模几个质数来判断每个的值是不是等于0,这样出锅的概率就非常小

然而这样做复杂度是O(nm),过不去

我们发现对于某一个模数p,x+kp和x算出来的结果模p以后是一样的,这样的话,只要先算出来一个比较小的p以内的所有结果,再去从那些里挑出模p等于0的,再去判断这些+kp以后模别的等不等于0,这样复杂度就会减小很多

我选择了13331,19260817和1e9+7

另外快读也需要修改一下

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=,maxm=1e6+;
const int p[]={,,1e9+}; inline void rd(int &x1,int &x2,int &x3){
x1=x2=x3=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<=''){
x1=(x1*+c-'')%p[];
x2=(x2*+c-'')%p[];
x3=(x3*10ll+c-'')%p[];
c=getchar();
}x1=x1*neg%p[];
x2=x2*neg%p[];
x3=x3*neg%p[];
} int N,M,a[maxn][],cnt;
queue<int> q;
bool ans[maxm]; bool judge(int id,int x){
int sum=a[N][id];x%=p[id];
for(int i=N;i;i--) sum=((ll)sum*x+a[i-][id])%p[id];
return sum==;
} int main(){
// freopen("testdata.in","r",stdin);
int i,j,k;
scanf("%d%d",&N,&M);
for(i=;i<=N;i++) rd(a[i][],a[i][],a[i][]);
for(i=;i<=min(M,p[]);i++){
if(judge(,i)) q.push(i%p[]);
}
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;x+p[]*i<=M;i++){
if(judge(,x+p[]*i)&&judge(,x+p[]*i)) ans[x+p[]*i]=,cnt++;
}
}
printf("%d\n",cnt);
for(i=;i<=M;i++) if(ans[i]) printf("%d\n",i); return ;
}

luogu2312 [NOIp2015]解方程 (秦九韶)的更多相关文章

  1. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  2. luogu2312 解方程 (数论,hash)

    luogu2312 解方程 (数论,hash) 第一次外出学习讲过的题目,然后被讲课人的一番话惊呆了. 这个题,我想着当年全国只有十几个满分.....然后他又说了句我考场A这道题时,用了5个模数 确实 ...

  3. bzoj3751 / P2312 解方程

    P2312 解方程 bzoj3751(数据加强) 暴力的一题 数据范围:$\left | a_{i} \right |<=10^{10000}$.连高精都无法解决. 然鹅面对这种题,有一种常规套 ...

  4. 【NOIP2014】解方程

    题目描述 已知多项式方程 \[a_0 + a_1x + a_2x^2 + \dots +a_nx^n=0\] 求这个方程在\([1,m]\)内的整数解(\(n\)和\(m\)均为正整数). 输入输出格 ...

  5. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  6. 洛谷 P2312 解方程 题解

    P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...

  7. [noip2014]P2312 解方程

    P2312 解方程 其实这道题就是求一个1元n次方程在区间[1, m]上的整数解. 我们枚举[1, m]上的所有整数,带进多项式中看看结果是不是0即可. 这里有一个技巧就是秦九韶算法,请读者自行查看学 ...

  8. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

  9. HDU 4793 Collision --解方程

    题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,v ...

随机推荐

  1. NOIP2018 模拟赛(二十二)雅礼NOI

    Preface 这次的题目都是NOI+的题,所以大家的分数都有点惨烈. 依靠T1大力骗分水到Rank2 所以想看正解的话看这里吧 A. 「雅礼NOI2018模拟赛(一) Day1」树 看一眼题目感觉十 ...

  2. [Oracle]如何取Control File 的Dump

    ]如何取Control File 的Dump: SQL> alter session set events 'immediate trace name controlf level 3';SQL ...

  3. [数据可视化之一]Pandas单变量画图

    Pandas单变量画图 Bar Chat Line Chart Area Chart Histogram df.plot.bar() df.plot.line() df.plot.area() df. ...

  4. 系统引导修复,grub2下的各种骚作

    新买的xps装了一个rhel7.5,各种恶心... 第一次:升级内核之后居然引导不了! 进入bios setup,把bios 引导的文件选择为 grub64.eif,成功进入系统 第二次:升级grub ...

  5. CentOS安装noVNC,以Web方式交付VNC远程连接

    什么是noVNC noVNC 是一个 HTML5 VNC 客户端,采用 HTML 5 WebSockets, Canvas 和 JavaScript 实现,noVNC 被普遍用在各大云计算.虚拟机控制 ...

  6. 因写太多 BUG!程序员遭公司颁奖羞辱,做的一个比一个绝​

    刚入职的程序员新人,办公桌上,基本上也就一电脑.一键盘.一鼠标,再配个被杯子.然而混迹职场多年的猿老们,办公桌上都有一些彰显身份地位的“好东西”. 这张图两点颇多,最显眼的,是办公桌上那个黄黄的东西, ...

  7. Nagios监控系统部署(源码)

    1. 概述2. 部署Nagios2.1 创建Nagios用户组2.2 下载Nagios和Nagios-plugin源码2.3 编译安装3. 部署Nagios-plugin3.1 编译安装nagios- ...

  8. Sql_join left right

    1.内连接inner join 只返回两张表中所有满足连接条件的行,即使用比较运算符根据每个表中共有的列的值匹配两个表中的行.(inner关键字是可省略的) ①传统的连接写法: 在FROM子句中列出所 ...

  9. StoryLine3变量存储与跳转后台时的使用

    前言 公司项目原因,接触到storyline3(后面简称SL)课件制作工具,类似ppt,但是又多了互动.交互,且页面元素可添加触发器,触发器中可执行js代码. 1.官方教程 在SL中,会有“了解详情. ...

  10. youtube下载工具

    Youtube是一个全球性的视频分享网站,其种类之多,内容之丰富,是大家有目共睹的.特别是原创视频更是多不胜数, 每分钟都有400+小时的youtube视频上传,每天都有30亿+的视频被观看.随着视频 ...